Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
bitscmp |
|- ( 0 e. ZZ -> ( NN0 \ ( bits ` 0 ) ) = ( bits ` ( -u 0 - 1 ) ) ) |
3 |
1 2
|
ax-mp |
|- ( NN0 \ ( bits ` 0 ) ) = ( bits ` ( -u 0 - 1 ) ) |
4 |
|
0bits |
|- ( bits ` 0 ) = (/) |
5 |
4
|
difeq2i |
|- ( NN0 \ ( bits ` 0 ) ) = ( NN0 \ (/) ) |
6 |
|
dif0 |
|- ( NN0 \ (/) ) = NN0 |
7 |
5 6
|
eqtri |
|- ( NN0 \ ( bits ` 0 ) ) = NN0 |
8 |
|
neg0 |
|- -u 0 = 0 |
9 |
8
|
oveq1i |
|- ( -u 0 - 1 ) = ( 0 - 1 ) |
10 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
11 |
9 10
|
eqtr4i |
|- ( -u 0 - 1 ) = -u 1 |
12 |
11
|
fveq2i |
|- ( bits ` ( -u 0 - 1 ) ) = ( bits ` -u 1 ) |
13 |
3 7 12
|
3eqtr3ri |
|- ( bits ` -u 1 ) = NN0 |