Metamath Proof Explorer


Theorem snnex

Description: The class of all singletons is a proper class. See also pwnex . (Contributed by NM, 10-Oct-2008) (Proof shortened by Eric Schmidt, 7-Dec-2008) (Proof shortened by BJ, 5-Dec-2021)

Ref Expression
Assertion snnex { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V

Proof

Step Hyp Ref Expression
1 abnex ( ∀ 𝑦 ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) → ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V )
2 df-nel ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V )
3 1 2 sylibr ( ∀ 𝑦 ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V )
4 snex { 𝑦 } ∈ V
5 vsnid 𝑦 ∈ { 𝑦 }
6 4 5 pm3.2i ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } )
7 3 6 mpg { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V