| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vprc | ⊢ ¬  V  ∈  V | 
						
							| 2 |  | alral | ⊢ ( ∀ 𝑥 ( 𝐹  ∈  𝑉  ∧  𝑥  ∈  𝐹 )  →  ∀ 𝑥  ∈  V ( 𝐹  ∈  𝑉  ∧  𝑥  ∈  𝐹 ) ) | 
						
							| 3 |  | rexv | ⊢ ( ∃ 𝑥  ∈  V 𝑦  =  𝐹  ↔  ∃ 𝑥 𝑦  =  𝐹 ) | 
						
							| 4 | 3 | bicomi | ⊢ ( ∃ 𝑥 𝑦  =  𝐹  ↔  ∃ 𝑥  ∈  V 𝑦  =  𝐹 ) | 
						
							| 5 | 4 | abbii | ⊢ { 𝑦  ∣  ∃ 𝑥 𝑦  =  𝐹 }  =  { 𝑦  ∣  ∃ 𝑥  ∈  V 𝑦  =  𝐹 } | 
						
							| 6 | 5 | eleq1i | ⊢ ( { 𝑦  ∣  ∃ 𝑥 𝑦  =  𝐹 }  ∈  V  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  V 𝑦  =  𝐹 }  ∈  V ) | 
						
							| 7 | 6 | biimpi | ⊢ ( { 𝑦  ∣  ∃ 𝑥 𝑦  =  𝐹 }  ∈  V  →  { 𝑦  ∣  ∃ 𝑥  ∈  V 𝑦  =  𝐹 }  ∈  V ) | 
						
							| 8 |  | abnexg | ⊢ ( ∀ 𝑥  ∈  V ( 𝐹  ∈  𝑉  ∧  𝑥  ∈  𝐹 )  →  ( { 𝑦  ∣  ∃ 𝑥  ∈  V 𝑦  =  𝐹 }  ∈  V  →  V  ∈  V ) ) | 
						
							| 9 | 2 7 8 | syl2im | ⊢ ( ∀ 𝑥 ( 𝐹  ∈  𝑉  ∧  𝑥  ∈  𝐹 )  →  ( { 𝑦  ∣  ∃ 𝑥 𝑦  =  𝐹 }  ∈  V  →  V  ∈  V ) ) | 
						
							| 10 | 1 9 | mtoi | ⊢ ( ∀ 𝑥 ( 𝐹  ∈  𝑉  ∧  𝑥  ∈  𝐹 )  →  ¬  { 𝑦  ∣  ∃ 𝑥 𝑦  =  𝐹 }  ∈  V ) |