Metamath Proof Explorer


Theorem spd

Description: Specialization deduction, using implicit substitution. Based on the proof of spimed . (Contributed by Emmett Weisz, 17-Jan-2020)

Ref Expression
Hypotheses spd.1 ( 𝜒 → Ⅎ 𝑥 𝜓 )
spd.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion spd ( 𝜒 → ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 spd.1 ( 𝜒 → Ⅎ 𝑥 𝜓 )
2 spd.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 ax6e 𝑥 𝑥 = 𝑦
4 2 biimpd ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
5 3 4 eximii 𝑥 ( 𝜑𝜓 )
6 5 19.35i ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 )
7 1 19.9d ( 𝜒 → ( ∃ 𝑥 𝜓𝜓 ) )
8 6 7 syl5 ( 𝜒 → ( ∀ 𝑥 𝜑𝜓 ) )