Metamath Proof Explorer


Theorem spd

Description: Specialization deduction, using implicit substitution. Based on the proof of spimed . (Contributed by Emmett Weisz, 17-Jan-2020)

Ref Expression
Hypotheses spd.1 χ x ψ
spd.2 x = y φ ψ
Assertion spd χ x φ ψ

Proof

Step Hyp Ref Expression
1 spd.1 χ x ψ
2 spd.2 x = y φ ψ
3 ax6e x x = y
4 2 biimpd x = y φ ψ
5 3 4 eximii x φ ψ
6 5 19.35i x φ x ψ
7 1 19.9d χ x ψ ψ
8 6 7 syl5 χ x φ ψ