Metamath Proof Explorer


Theorem spd

Description: Specialization deduction, using implicit substitution. Based on the proof of spimed . (Contributed by Emmett Weisz, 17-Jan-2020)

Ref Expression
Hypotheses spd.1 χxψ
spd.2 x=yφψ
Assertion spd χxφψ

Proof

Step Hyp Ref Expression
1 spd.1 χxψ
2 spd.2 x=yφψ
3 ax6e xx=y
4 2 biimpd x=yφψ
5 3 4 eximii xφψ
6 5 19.35i xφxψ
7 1 19.9d χxψψ
8 6 7 syl5 χxφψ