Description: Specialization deduction, using implicit substitution. Based on the proof of spimed . (Contributed by Emmett Weisz, 17-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spd.1 | |- ( ch -> F/ x ps ) | |
| spd.2 | |- ( x = y -> ( ph <-> ps ) ) | ||
| Assertion | spd | |- ( ch -> ( A. x ph -> ps ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spd.1 | |- ( ch -> F/ x ps ) | |
| 2 | spd.2 | |- ( x = y -> ( ph <-> ps ) ) | |
| 3 | ax6e | |- E. x x = y | |
| 4 | 2 | biimpd | |- ( x = y -> ( ph -> ps ) ) | 
| 5 | 3 4 | eximii | |- E. x ( ph -> ps ) | 
| 6 | 5 | 19.35i | |- ( A. x ph -> E. x ps ) | 
| 7 | 1 | 19.9d | |- ( ch -> ( E. x ps -> ps ) ) | 
| 8 | 6 7 | syl5 | |- ( ch -> ( A. x ph -> ps ) ) |