Metamath Proof Explorer


Theorem spd

Description: Specialization deduction, using implicit substitution. Based on the proof of spimed . (Contributed by Emmett Weisz, 17-Jan-2020)

Ref Expression
Hypotheses spd.1
|- ( ch -> F/ x ps )
spd.2
|- ( x = y -> ( ph <-> ps ) )
Assertion spd
|- ( ch -> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 spd.1
 |-  ( ch -> F/ x ps )
2 spd.2
 |-  ( x = y -> ( ph <-> ps ) )
3 ax6e
 |-  E. x x = y
4 2 biimpd
 |-  ( x = y -> ( ph -> ps ) )
5 3 4 eximii
 |-  E. x ( ph -> ps )
6 5 19.35i
 |-  ( A. x ph -> E. x ps )
7 1 19.9d
 |-  ( ch -> ( E. x ps -> ps ) )
8 6 7 syl5
 |-  ( ch -> ( A. x ph -> ps ) )