Description: Specialization deduction, using implicit substitution. Based on the proof of spimed . (Contributed by Emmett Weisz, 17-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spd.1 | |- ( ch -> F/ x ps ) |
|
spd.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | spd | |- ( ch -> ( A. x ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spd.1 | |- ( ch -> F/ x ps ) |
|
2 | spd.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
3 | ax6e | |- E. x x = y |
|
4 | 2 | biimpd | |- ( x = y -> ( ph -> ps ) ) |
5 | 3 4 | eximii | |- E. x ( ph -> ps ) |
6 | 5 | 19.35i | |- ( A. x ph -> E. x ps ) |
7 | 1 | 19.9d | |- ( ch -> ( E. x ps -> ps ) ) |
8 | 6 7 | syl5 | |- ( ch -> ( A. x ph -> ps ) ) |