Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | speccl | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) ⊆ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | specval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ⊆ ℂ | |
| 3 | 1 2 | eqsstrdi | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) ⊆ ℂ ) |