Metamath Proof Explorer


Theorem speccl

Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion speccl T:LambdaT

Proof

Step Hyp Ref Expression
1 specval T:LambdaT=x|¬T-opx·opI:1-1
2 ssrab2 x|¬T-opx·opI:1-1
3 1 2 eqsstrdi T:LambdaT