Metamath Proof Explorer


Theorem sprid

Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprid { 𝑝 ∣ ∃ 𝑎 ∈ V ∃ 𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } } = { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } }

Proof

Step Hyp Ref Expression
1 rexv ( ∃ 𝑎 ∈ V ∃ 𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } )
2 rexv ( ∃ 𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } )
3 2 exbii ( ∃ 𝑎𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } )
4 1 3 bitri ( ∃ 𝑎 ∈ V ∃ 𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } )
5 4 abbii { 𝑝 ∣ ∃ 𝑎 ∈ V ∃ 𝑏 ∈ V 𝑝 = { 𝑎 , 𝑏 } } = { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } }