| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 2 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
| 3 |
1 2
|
orim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) ) |
| 4 |
|
elisset |
⊢ ( 𝐴 ∈ V → ∃ 𝑎 𝑎 = 𝐴 ) |
| 5 |
|
elisset |
⊢ ( 𝐵 ∈ V → ∃ 𝑏 𝑏 = 𝐵 ) |
| 6 |
|
exdistrv |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ↔ ( ∃ 𝑎 𝑎 = 𝐴 ∧ ∃ 𝑏 𝑏 = 𝐵 ) ) |
| 7 |
|
preq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 9 |
8
|
2eximi |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 10 |
6 9
|
sylbir |
⊢ ( ( ∃ 𝑎 𝑎 = 𝐴 ∧ ∃ 𝑏 𝑏 = 𝐵 ) → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 11 |
4 5 10
|
syl2an |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 12 |
11
|
expcom |
⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 13 |
|
preq2 |
⊢ ( 𝑏 = 𝑎 → { 𝑎 , 𝑏 } = { 𝑎 , 𝑎 } ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑏 = 𝑎 ∧ 𝑎 = 𝐴 ) → { 𝑎 , 𝑏 } = { 𝑎 , 𝑎 } ) |
| 15 |
|
dfsn2 |
⊢ { 𝑎 } = { 𝑎 , 𝑎 } |
| 16 |
|
sneq |
⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑏 = 𝑎 ∧ 𝑎 = 𝐴 ) → { 𝑎 } = { 𝐴 } ) |
| 18 |
15 17
|
eqtr3id |
⊢ ( ( 𝑏 = 𝑎 ∧ 𝑎 = 𝐴 ) → { 𝑎 , 𝑎 } = { 𝐴 } ) |
| 19 |
14 18
|
eqtr2d |
⊢ ( ( 𝑏 = 𝑎 ∧ 𝑎 = 𝐴 ) → { 𝐴 } = { 𝑎 , 𝑏 } ) |
| 20 |
19
|
ex |
⊢ ( 𝑏 = 𝑎 → ( 𝑎 = 𝐴 → { 𝐴 } = { 𝑎 , 𝑏 } ) ) |
| 21 |
20
|
spimevw |
⊢ ( 𝑎 = 𝐴 → ∃ 𝑏 { 𝐴 } = { 𝑎 , 𝑏 } ) |
| 22 |
21
|
adantl |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝑎 = 𝐴 ) → ∃ 𝑏 { 𝐴 } = { 𝑎 , 𝑏 } ) |
| 23 |
|
prprc2 |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 24 |
23
|
adantr |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝑎 = 𝐴 ) → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 25 |
24
|
eqeq1d |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝑎 = 𝐴 ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ { 𝐴 } = { 𝑎 , 𝑏 } ) ) |
| 26 |
25
|
exbidv |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝑎 = 𝐴 ) → ( ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ∃ 𝑏 { 𝐴 } = { 𝑎 , 𝑏 } ) ) |
| 27 |
22 26
|
mpbird |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝑎 = 𝐴 ) → ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 28 |
27
|
ex |
⊢ ( ¬ 𝐵 ∈ V → ( 𝑎 = 𝐴 → ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 29 |
28
|
eximdv |
⊢ ( ¬ 𝐵 ∈ V → ( ∃ 𝑎 𝑎 = 𝐴 → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 30 |
4 29
|
syl5 |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐴 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 31 |
12 30
|
pm2.61i |
⊢ ( 𝐴 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 32 |
11
|
ex |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 33 |
|
preq1 |
⊢ ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 } = { 𝑏 , 𝑏 } ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑎 = 𝑏 ∧ 𝑏 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝑏 , 𝑏 } ) |
| 35 |
|
dfsn2 |
⊢ { 𝑏 } = { 𝑏 , 𝑏 } |
| 36 |
|
sneq |
⊢ ( 𝑏 = 𝐵 → { 𝑏 } = { 𝐵 } ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑎 = 𝑏 ∧ 𝑏 = 𝐵 ) → { 𝑏 } = { 𝐵 } ) |
| 38 |
35 37
|
eqtr3id |
⊢ ( ( 𝑎 = 𝑏 ∧ 𝑏 = 𝐵 ) → { 𝑏 , 𝑏 } = { 𝐵 } ) |
| 39 |
34 38
|
eqtr2d |
⊢ ( ( 𝑎 = 𝑏 ∧ 𝑏 = 𝐵 ) → { 𝐵 } = { 𝑎 , 𝑏 } ) |
| 40 |
39
|
ex |
⊢ ( 𝑎 = 𝑏 → ( 𝑏 = 𝐵 → { 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 41 |
40
|
spimevw |
⊢ ( 𝑏 = 𝐵 → ∃ 𝑎 { 𝐵 } = { 𝑎 , 𝑏 } ) |
| 42 |
41
|
adantl |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝑏 = 𝐵 ) → ∃ 𝑎 { 𝐵 } = { 𝑎 , 𝑏 } ) |
| 43 |
|
prprc1 |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } ) |
| 44 |
43
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝑏 = 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐵 } ) |
| 45 |
44
|
eqeq1d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝑏 = 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ { 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 46 |
45
|
exbidv |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝑏 = 𝐵 ) → ( ∃ 𝑎 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ∃ 𝑎 { 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 47 |
42 46
|
mpbird |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝑏 = 𝐵 ) → ∃ 𝑎 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 48 |
47
|
ex |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑏 = 𝐵 → ∃ 𝑎 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 49 |
48
|
eximdv |
⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑏 𝑏 = 𝐵 → ∃ 𝑏 ∃ 𝑎 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 50 |
49
|
impcom |
⊢ ( ( ∃ 𝑏 𝑏 = 𝐵 ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑏 ∃ 𝑎 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 51 |
|
excom |
⊢ ( ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ↔ ∃ 𝑏 ∃ 𝑎 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 52 |
50 51
|
sylibr |
⊢ ( ( ∃ 𝑏 𝑏 = 𝐵 ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 53 |
52
|
ex |
⊢ ( ∃ 𝑏 𝑏 = 𝐵 → ( ¬ 𝐴 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 54 |
53 5
|
syl11 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 55 |
32 54
|
pm2.61i |
⊢ ( 𝐵 ∈ V → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 56 |
31 55
|
jaoi |
⊢ ( ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 57 |
3 56
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 58 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
| 59 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( 𝑝 = { 𝑎 , 𝑏 } ↔ { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 60 |
59
|
2exbidv |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 61 |
58 60
|
elab |
⊢ ( { 𝐴 , 𝐵 } ∈ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } ↔ ∃ 𝑎 ∃ 𝑏 { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 62 |
57 61
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → { 𝐴 , 𝐵 } ∈ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } ) |