| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 2 |  | elex | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  V ) | 
						
							| 3 | 1 2 | orim12i | ⊢ ( ( 𝐴  ∈  𝑉  ∨  𝐵  ∈  𝑊 )  →  ( 𝐴  ∈  V  ∨  𝐵  ∈  V ) ) | 
						
							| 4 |  | elisset | ⊢ ( 𝐴  ∈  V  →  ∃ 𝑎 𝑎  =  𝐴 ) | 
						
							| 5 |  | elisset | ⊢ ( 𝐵  ∈  V  →  ∃ 𝑏 𝑏  =  𝐵 ) | 
						
							| 6 |  | exdistrv | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  ↔  ( ∃ 𝑎 𝑎  =  𝐴  ∧  ∃ 𝑏 𝑏  =  𝐵 ) ) | 
						
							| 7 |  | preq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 9 | 8 | 2eximi | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 10 | 6 9 | sylbir | ⊢ ( ( ∃ 𝑎 𝑎  =  𝐴  ∧  ∃ 𝑏 𝑏  =  𝐵 )  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 11 | 4 5 10 | syl2an | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 12 | 11 | expcom | ⊢ ( 𝐵  ∈  V  →  ( 𝐴  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 13 |  | preq2 | ⊢ ( 𝑏  =  𝑎  →  { 𝑎 ,  𝑏 }  =  { 𝑎 ,  𝑎 } ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑏  =  𝑎  ∧  𝑎  =  𝐴 )  →  { 𝑎 ,  𝑏 }  =  { 𝑎 ,  𝑎 } ) | 
						
							| 15 |  | dfsn2 | ⊢ { 𝑎 }  =  { 𝑎 ,  𝑎 } | 
						
							| 16 |  | sneq | ⊢ ( 𝑎  =  𝐴  →  { 𝑎 }  =  { 𝐴 } ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑏  =  𝑎  ∧  𝑎  =  𝐴 )  →  { 𝑎 }  =  { 𝐴 } ) | 
						
							| 18 | 15 17 | eqtr3id | ⊢ ( ( 𝑏  =  𝑎  ∧  𝑎  =  𝐴 )  →  { 𝑎 ,  𝑎 }  =  { 𝐴 } ) | 
						
							| 19 | 14 18 | eqtr2d | ⊢ ( ( 𝑏  =  𝑎  ∧  𝑎  =  𝐴 )  →  { 𝐴 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝑏  =  𝑎  →  ( 𝑎  =  𝐴  →  { 𝐴 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 21 | 20 | spimevw | ⊢ ( 𝑎  =  𝐴  →  ∃ 𝑏 { 𝐴 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝑎  =  𝐴 )  →  ∃ 𝑏 { 𝐴 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 23 |  | prprc2 | ⊢ ( ¬  𝐵  ∈  V  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝑎  =  𝐴 )  →  { 𝐴 ,  𝐵 }  =  { 𝐴 } ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝑎  =  𝐴 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  { 𝐴 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 26 | 25 | exbidv | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝑎  =  𝐴 )  →  ( ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ∃ 𝑏 { 𝐴 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 27 | 22 26 | mpbird | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝑎  =  𝐴 )  →  ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 28 | 27 | ex | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝑎  =  𝐴  →  ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 29 | 28 | eximdv | ⊢ ( ¬  𝐵  ∈  V  →  ( ∃ 𝑎 𝑎  =  𝐴  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 30 | 4 29 | syl5 | ⊢ ( ¬  𝐵  ∈  V  →  ( 𝐴  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 31 | 12 30 | pm2.61i | ⊢ ( 𝐴  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 32 | 11 | ex | ⊢ ( 𝐴  ∈  V  →  ( 𝐵  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 33 |  | preq1 | ⊢ ( 𝑎  =  𝑏  →  { 𝑎 ,  𝑏 }  =  { 𝑏 ,  𝑏 } ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑎  =  𝑏  ∧  𝑏  =  𝐵 )  →  { 𝑎 ,  𝑏 }  =  { 𝑏 ,  𝑏 } ) | 
						
							| 35 |  | dfsn2 | ⊢ { 𝑏 }  =  { 𝑏 ,  𝑏 } | 
						
							| 36 |  | sneq | ⊢ ( 𝑏  =  𝐵  →  { 𝑏 }  =  { 𝐵 } ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑎  =  𝑏  ∧  𝑏  =  𝐵 )  →  { 𝑏 }  =  { 𝐵 } ) | 
						
							| 38 | 35 37 | eqtr3id | ⊢ ( ( 𝑎  =  𝑏  ∧  𝑏  =  𝐵 )  →  { 𝑏 ,  𝑏 }  =  { 𝐵 } ) | 
						
							| 39 | 34 38 | eqtr2d | ⊢ ( ( 𝑎  =  𝑏  ∧  𝑏  =  𝐵 )  →  { 𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝑎  =  𝑏  →  ( 𝑏  =  𝐵  →  { 𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 41 | 40 | spimevw | ⊢ ( 𝑏  =  𝐵  →  ∃ 𝑎 { 𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝑏  =  𝐵 )  →  ∃ 𝑎 { 𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 43 |  | prprc1 | ⊢ ( ¬  𝐴  ∈  V  →  { 𝐴 ,  𝐵 }  =  { 𝐵 } ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝑏  =  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐵 } ) | 
						
							| 45 | 44 | eqeq1d | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝑏  =  𝐵 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  { 𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 46 | 45 | exbidv | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝑏  =  𝐵 )  →  ( ∃ 𝑎 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ∃ 𝑎 { 𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 47 | 42 46 | mpbird | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝑏  =  𝐵 )  →  ∃ 𝑎 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 48 | 47 | ex | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝑏  =  𝐵  →  ∃ 𝑎 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 49 | 48 | eximdv | ⊢ ( ¬  𝐴  ∈  V  →  ( ∃ 𝑏 𝑏  =  𝐵  →  ∃ 𝑏 ∃ 𝑎 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 50 | 49 | impcom | ⊢ ( ( ∃ 𝑏 𝑏  =  𝐵  ∧  ¬  𝐴  ∈  V )  →  ∃ 𝑏 ∃ 𝑎 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 51 |  | excom | ⊢ ( ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 }  ↔  ∃ 𝑏 ∃ 𝑎 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 52 | 50 51 | sylibr | ⊢ ( ( ∃ 𝑏 𝑏  =  𝐵  ∧  ¬  𝐴  ∈  V )  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 53 | 52 | ex | ⊢ ( ∃ 𝑏 𝑏  =  𝐵  →  ( ¬  𝐴  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 54 | 53 5 | syl11 | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐵  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 55 | 32 54 | pm2.61i | ⊢ ( 𝐵  ∈  V  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 56 | 31 55 | jaoi | ⊢ ( ( 𝐴  ∈  V  ∨  𝐵  ∈  V )  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 57 | 3 56 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∨  𝐵  ∈  𝑊 )  →  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 58 |  | prex | ⊢ { 𝐴 ,  𝐵 }  ∈  V | 
						
							| 59 |  | eqeq1 | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( 𝑝  =  { 𝑎 ,  𝑏 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 60 | 59 | 2exbidv | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ( ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 }  ↔  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 61 | 58 60 | elab | ⊢ ( { 𝐴 ,  𝐵 }  ∈  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } }  ↔  ∃ 𝑎 ∃ 𝑏 { 𝐴 ,  𝐵 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 62 | 57 61 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∨  𝐵  ∈  𝑊 )  →  { 𝐴 ,  𝐵 }  ∈  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } } ) |