Metamath Proof Explorer


Theorem spr0nelg

Description: The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0nelg ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } }

Proof

Step Hyp Ref Expression
1 ianor ( ¬ ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) ↔ ( ¬ 𝑝 = ∅ ∨ ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
2 1 bicomi ( ( ¬ 𝑝 = ∅ ∨ ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) ↔ ¬ ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
3 2 albii ( ∀ 𝑝 ( ¬ 𝑝 = ∅ ∨ ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) ↔ ∀ 𝑝 ¬ ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
4 alnex ( ∀ 𝑝 ¬ ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) ↔ ¬ ∃ 𝑝 ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
5 3 4 bitri ( ∀ 𝑝 ( ¬ 𝑝 = ∅ ∨ ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) ↔ ¬ ∃ 𝑝 ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
6 vex 𝑎 ∈ V
7 6 prnz { 𝑎 , 𝑏 } ≠ ∅
8 7 nesymi ¬ ∅ = { 𝑎 , 𝑏 }
9 eqeq1 ( 𝑝 = ∅ → ( 𝑝 = { 𝑎 , 𝑏 } ↔ ∅ = { 𝑎 , 𝑏 } ) )
10 8 9 mtbiri ( 𝑝 = ∅ → ¬ 𝑝 = { 𝑎 , 𝑏 } )
11 10 alrimivv ( 𝑝 = ∅ → ∀ 𝑎𝑏 ¬ 𝑝 = { 𝑎 , 𝑏 } )
12 2nexaln ( ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ↔ ∀ 𝑎𝑏 ¬ 𝑝 = { 𝑎 , 𝑏 } )
13 11 12 sylibr ( 𝑝 = ∅ → ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } )
14 13 imori ( ¬ 𝑝 = ∅ ∨ ¬ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } )
15 5 14 mpgbi ¬ ∃ 𝑝 ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } )
16 df-nel ( ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } ↔ ¬ ∅ ∈ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } )
17 clelab ( ∅ ∈ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } ↔ ∃ 𝑝 ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
18 16 17 xchbinx ( ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } ↔ ¬ ∃ 𝑝 ( 𝑝 = ∅ ∧ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } ) )
19 15 18 mpbir ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } }