Metamath Proof Explorer


Theorem spr0nelg

Description: The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0nelg p|abp=ab

Proof

Step Hyp Ref Expression
1 ianor ¬p=abp=ab¬p=¬abp=ab
2 1 bicomi ¬p=¬abp=ab¬p=abp=ab
3 2 albii p¬p=¬abp=abp¬p=abp=ab
4 alnex p¬p=abp=ab¬pp=abp=ab
5 3 4 bitri p¬p=¬abp=ab¬pp=abp=ab
6 vex aV
7 6 prnz ab
8 7 nesymi ¬=ab
9 eqeq1 p=p=ab=ab
10 8 9 mtbiri p=¬p=ab
11 10 alrimivv p=ab¬p=ab
12 2nexaln ¬abp=abab¬p=ab
13 11 12 sylibr p=¬abp=ab
14 13 imori ¬p=¬abp=ab
15 5 14 mpgbi ¬pp=abp=ab
16 df-nel p|abp=ab¬p|abp=ab
17 clelab p|abp=abpp=abp=ab
18 16 17 xchbinx p|abp=ab¬pp=abp=ab
19 15 18 mpbir p|abp=ab