Metamath Proof Explorer


Theorem spr0nelg

Description: The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0nelg p | a b p = a b

Proof

Step Hyp Ref Expression
1 ianor ¬ p = a b p = a b ¬ p = ¬ a b p = a b
2 1 bicomi ¬ p = ¬ a b p = a b ¬ p = a b p = a b
3 2 albii p ¬ p = ¬ a b p = a b p ¬ p = a b p = a b
4 alnex p ¬ p = a b p = a b ¬ p p = a b p = a b
5 3 4 bitri p ¬ p = ¬ a b p = a b ¬ p p = a b p = a b
6 vex a V
7 6 prnz a b
8 7 nesymi ¬ = a b
9 eqeq1 p = p = a b = a b
10 8 9 mtbiri p = ¬ p = a b
11 10 alrimivv p = a b ¬ p = a b
12 2nexaln ¬ a b p = a b a b ¬ p = a b
13 11 12 sylibr p = ¬ a b p = a b
14 13 imori ¬ p = ¬ a b p = a b
15 5 14 mpgbi ¬ p p = a b p = a b
16 df-nel p | a b p = a b ¬ p | a b p = a b
17 clelab p | a b p = a b p p = a b p = a b
18 16 17 xchbinx p | a b p = a b ¬ p p = a b p = a b
19 15 18 mpbir p | a b p = a b