Metamath Proof Explorer


Theorem sprid

Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprid p | a V b V p = a b = p | a b p = a b

Proof

Step Hyp Ref Expression
1 rexv a V b V p = a b a b V p = a b
2 rexv b V p = a b b p = a b
3 2 exbii a b V p = a b a b p = a b
4 1 3 bitri a V b V p = a b a b p = a b
5 4 abbii p | a V b V p = a b = p | a b p = a b