| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sprmpod.1 |
⊢ 𝑀 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } ) |
| 2 |
|
sprmpod.2 |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜒 ↔ 𝜓 ) ) |
| 3 |
|
sprmpod.3 |
⊢ ( 𝜑 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
| 4 |
|
sprmpod.4 |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 → 𝜃 ) ) |
| 5 |
|
sprmpod.5 |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜃 } ∈ V ) |
| 6 |
1
|
a1i |
⊢ ( 𝜑 → 𝑀 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } ) ) |
| 7 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑣 𝑅 𝑒 ) = ( 𝑉 𝑅 𝐸 ) ) |
| 8 |
7
|
breqd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ↔ 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ↔ 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ) ) |
| 10 |
2
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → ( 𝜒 ↔ 𝜓 ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → ( ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) ↔ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) ) ) |
| 12 |
11
|
opabbidv |
⊢ ( ( 𝜑 ∧ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑣 𝑅 𝑒 ) 𝑦 ∧ 𝜒 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ) |
| 13 |
3
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 14 |
3
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 15 |
|
opabbrex |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 → 𝜃 ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝜃 } ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ∈ V ) |
| 16 |
4 5 15
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ∈ V ) |
| 17 |
6 12 13 14 16
|
ovmpod |
⊢ ( 𝜑 → ( 𝑉 𝑀 𝐸 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝑉 𝑅 𝐸 ) 𝑦 ∧ 𝜓 ) } ) |