Description: The square root function is one-to-one. (Contributed by NM, 27-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | sqrt11i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
3 | sqrt11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |