Description: A semiring of sets is a collection of subsets of O . (Contributed by Thierry Arnoux, 18-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issros.1 | ⊢ 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) } | |
| Assertion | srossspw | ⊢ ( 𝑆 ∈ 𝑁 → 𝑆 ⊆ 𝒫 𝑂 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issros.1 | ⊢ 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) } | |
| 2 | 1 | issros | ⊢ ( 𝑆 ∈ 𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) | 
| 3 | 2 | simp1bi | ⊢ ( 𝑆 ∈ 𝑁 → 𝑆 ∈ 𝒫 𝒫 𝑂 ) | 
| 4 | 3 | elpwid | ⊢ ( 𝑆 ∈ 𝑁 → 𝑆 ⊆ 𝒫 𝑂 ) |