Metamath Proof Explorer


Theorem srossspw

Description: A semiring of sets is a collection of subsets of O . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) }
Assertion srossspw ( 𝑆𝑁𝑆 ⊆ 𝒫 𝑂 )

Proof

Step Hyp Ref Expression
1 issros.1 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) }
2 1 issros ( 𝑆𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) )
3 2 simp1bi ( 𝑆𝑁𝑆 ∈ 𝒫 𝒫 𝑂 )
4 3 elpwid ( 𝑆𝑁𝑆 ⊆ 𝒫 𝑂 )