Description: A semiring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | issros.1 | ⊢ 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) } | |
Assertion | 0elsros | ⊢ ( 𝑆 ∈ 𝑁 → ∅ ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issros.1 | ⊢ 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) } | |
2 | 1 | issros | ⊢ ( 𝑆 ∈ 𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |
3 | 2 | simp2bi | ⊢ ( 𝑆 ∈ 𝑁 → ∅ ∈ 𝑆 ) |