Metamath Proof Explorer


Theorem issros

Description: The property of being a semirings of sets, i.e., collections of sets containing the empty set, closed under finite intersection, and where complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) }
Assertion issros ( 𝑆𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) )

Proof

Step Hyp Ref Expression
1 issros.1 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) }
2 eleq2 ( 𝑠 = 𝑆 → ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆 ) )
3 eleq2 ( 𝑠 = 𝑆 → ( ( 𝑥𝑦 ) ∈ 𝑠 ↔ ( 𝑥𝑦 ) ∈ 𝑆 ) )
4 pweq ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 )
5 4 rexeqdv ( 𝑠 = 𝑆 → ( ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ↔ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) )
6 3 5 anbi12d ( 𝑠 = 𝑆 → ( ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ↔ ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) )
7 6 raleqbi1dv ( 𝑠 = 𝑆 → ( ∀ 𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ↔ ∀ 𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) )
8 7 raleqbi1dv ( 𝑠 = 𝑆 → ( ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ↔ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) )
9 2 8 anbi12d ( 𝑠 = 𝑆 → ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) ) )
10 9 1 elrab2 ( 𝑆𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) ) )
11 3anass ( ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) ) )
12 10 11 bitr4i ( 𝑆𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ ( 𝑥𝑦 ) = 𝑧 ) ) ) )