Step |
Hyp |
Ref |
Expression |
1 |
|
issros.1 |
⊢ 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) } |
2 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆 ) ) |
3 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ) ) |
4 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
5 |
4
|
rexeqdv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) |
6 |
3 5
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ↔ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |
7 |
6
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |
8 |
7
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |
9 |
2 8
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) ) |
10 |
9 1
|
elrab2 |
⊢ ( 𝑆 ∈ 𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) ) |
11 |
|
3anass |
⊢ ( ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) ) |
12 |
10 11
|
bitr4i |
⊢ ( 𝑆 ∈ 𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |