| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issros.1 | ⊢ 𝑁  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) } | 
						
							| 2 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ∅  ∈  𝑠  ↔  ∅  ∈  𝑆 ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ↔  ( 𝑥  ∩  𝑦 )  ∈  𝑆 ) ) | 
						
							| 4 |  | pweq | ⊢ ( 𝑠  =  𝑆  →  𝒫  𝑠  =  𝒫  𝑆 ) | 
						
							| 5 | 4 | rexeqdv | ⊢ ( 𝑠  =  𝑆  →  ( ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 )  ↔  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 6 | 3 5 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) )  ↔  ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 7 | 6 | raleqbi1dv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) )  ↔  ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 8 | 7 | raleqbi1dv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 9 | 2 8 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) )  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) ) | 
						
							| 10 | 9 1 | elrab2 | ⊢ ( 𝑆  ∈  𝑁  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) ) | 
						
							| 11 |  | 3anass | ⊢ ( ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) )  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) ) | 
						
							| 12 | 10 11 | bitr4i | ⊢ ( 𝑆  ∈  𝑁  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) |