| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issros.1 |
|- N = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x i^i y ) e. s /\ E. z e. ~P s ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) } |
| 2 |
|
eleq2 |
|- ( s = S -> ( (/) e. s <-> (/) e. S ) ) |
| 3 |
|
eleq2 |
|- ( s = S -> ( ( x i^i y ) e. s <-> ( x i^i y ) e. S ) ) |
| 4 |
|
pweq |
|- ( s = S -> ~P s = ~P S ) |
| 5 |
4
|
rexeqdv |
|- ( s = S -> ( E. z e. ~P s ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) <-> E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) |
| 6 |
3 5
|
anbi12d |
|- ( s = S -> ( ( ( x i^i y ) e. s /\ E. z e. ~P s ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) <-> ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) |
| 7 |
6
|
raleqbi1dv |
|- ( s = S -> ( A. y e. s ( ( x i^i y ) e. s /\ E. z e. ~P s ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) <-> A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) |
| 8 |
7
|
raleqbi1dv |
|- ( s = S -> ( A. x e. s A. y e. s ( ( x i^i y ) e. s /\ E. z e. ~P s ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) <-> A. x e. S A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) |
| 9 |
2 8
|
anbi12d |
|- ( s = S -> ( ( (/) e. s /\ A. x e. s A. y e. s ( ( x i^i y ) e. s /\ E. z e. ~P s ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) <-> ( (/) e. S /\ A. x e. S A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) ) |
| 10 |
9 1
|
elrab2 |
|- ( S e. N <-> ( S e. ~P ~P O /\ ( (/) e. S /\ A. x e. S A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) ) |
| 11 |
|
3anass |
|- ( ( S e. ~P ~P O /\ (/) e. S /\ A. x e. S A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) <-> ( S e. ~P ~P O /\ ( (/) e. S /\ A. x e. S A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) ) |
| 12 |
10 11
|
bitr4i |
|- ( S e. N <-> ( S e. ~P ~P O /\ (/) e. S /\ A. x e. S A. y e. S ( ( x i^i y ) e. S /\ E. z e. ~P S ( z e. Fin /\ Disj_ t e. z t /\ ( x \ y ) = U. z ) ) ) ) |