Metamath Proof Explorer


Theorem issros

Description: The property of being a semirings of sets, i.e., collections of sets containing the empty set, closed under finite intersection, and where complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 N=s𝒫𝒫O|sxsysxysz𝒫szFinDisjtztxy=z
Assertion issros SNS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z

Proof

Step Hyp Ref Expression
1 issros.1 N=s𝒫𝒫O|sxsysxysz𝒫szFinDisjtztxy=z
2 eleq2 s=SsS
3 eleq2 s=SxysxyS
4 pweq s=S𝒫s=𝒫S
5 4 rexeqdv s=Sz𝒫szFinDisjtztxy=zz𝒫SzFinDisjtztxy=z
6 3 5 anbi12d s=Sxysz𝒫szFinDisjtztxy=zxySz𝒫SzFinDisjtztxy=z
7 6 raleqbi1dv s=Sysxysz𝒫szFinDisjtztxy=zySxySz𝒫SzFinDisjtztxy=z
8 7 raleqbi1dv s=Sxsysxysz𝒫szFinDisjtztxy=zxSySxySz𝒫SzFinDisjtztxy=z
9 2 8 anbi12d s=Ssxsysxysz𝒫szFinDisjtztxy=zSxSySxySz𝒫SzFinDisjtztxy=z
10 9 1 elrab2 SNS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z
11 3anass S𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=zS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z
12 10 11 bitr4i SNS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z