Metamath Proof Explorer


Theorem 0elsros

Description: A semiring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 N = s 𝒫 𝒫 O | s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z
Assertion 0elsros S N S

Proof

Step Hyp Ref Expression
1 issros.1 N = s 𝒫 𝒫 O | s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z
2 1 issros S N S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
3 2 simp2bi S N S