Metamath Proof Explorer


Theorem 0elsros

Description: A semiring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 N=s𝒫𝒫O|sxsysxysz𝒫szFinDisjtztxy=z
Assertion 0elsros SNS

Proof

Step Hyp Ref Expression
1 issros.1 N=s𝒫𝒫O|sxsysxysz𝒫szFinDisjtztxy=z
2 1 issros SNS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z
3 2 simp2bi SNS