| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issros.1 | ⊢ 𝑁  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) } | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑆  ∈  𝑁  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝐴  ∈  𝑆 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝑆  ∈  𝑁  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝐵  ∈  𝑆 ) | 
						
							| 4 | 1 | issros | ⊢ ( 𝑆  ∈  𝑁  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 5 | 4 | simp3bi | ⊢ ( 𝑆  ∈  𝑁  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  𝑁  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 7 |  | ineq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∩  𝑦 )  =  ( 𝐴  ∩  𝑦 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ↔  ( 𝐴  ∩  𝑦 )  ∈  𝑆 ) ) | 
						
							| 9 |  | difeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∖  𝑦 )  =  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∖  𝑦 )  =  ∪  𝑧  ↔  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 ) ) | 
						
							| 11 | 10 | 3anbi3d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 )  ↔  ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 )  ↔  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 13 | 8 12 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) )  ↔  ( ( 𝐴  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 14 |  | ineq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∩  𝑦 )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∩  𝑦 )  ∈  𝑆  ↔  ( 𝐴  ∩  𝐵 )  ∈  𝑆 ) ) | 
						
							| 16 |  | difeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∖  𝑦 )  =  ∪  𝑧  ↔  ( 𝐴  ∖  𝐵 )  =  ∪  𝑧 ) ) | 
						
							| 18 | 17 | 3anbi3d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 )  ↔  ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝐵 )  =  ∪  𝑧 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 )  ↔  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝐵 )  =  ∪  𝑧 ) ) ) | 
						
							| 20 | 15 19 | anbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝐴  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝑦 )  =  ∪  𝑧 ) )  ↔  ( ( 𝐴  ∩  𝐵 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝐵 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 21 | 13 20 | rspc2va | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝐵 )  =  ∪  𝑧 ) ) ) | 
						
							| 22 | 2 3 6 21 | syl21anc | ⊢ ( ( 𝑆  ∈  𝑁  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝐴  ∖  𝐵 )  =  ∪  𝑧 ) ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( ( 𝑆  ∈  𝑁  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝑆 ) |