Step |
Hyp |
Ref |
Expression |
1 |
|
issros.1 |
⊢ 𝑁 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑠 ∧ ∃ 𝑧 ∈ 𝒫 𝑠 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) } |
2 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝑁 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
3 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝑁 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑆 ) |
4 |
1
|
issros |
⊢ ( 𝑆 ∈ 𝑁 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |
5 |
4
|
simp3bi |
⊢ ( 𝑆 ∈ 𝑁 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝑁 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) |
7 |
|
ineq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝑦 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ↔ ( 𝐴 ∩ 𝑦 ) ∈ 𝑆 ) ) |
9 |
|
difeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑦 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ↔ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ) |
11 |
10
|
3anbi3d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ↔ ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) |
13 |
8 12
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ↔ ( ( 𝐴 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) ) |
14 |
|
ineq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐵 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∩ 𝑦 ) ∈ 𝑆 ↔ ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) ) |
16 |
|
difeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝐵 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ↔ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) |
18 |
17
|
3anbi3d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ↔ ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) ) |
20 |
15 19
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝑦 ) = ∪ 𝑧 ) ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) ) ) |
21 |
13 20
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝑥 ∖ 𝑦 ) = ∪ 𝑧 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) ) |
22 |
2 3 6 21
|
syl21anc |
⊢ ( ( 𝑆 ∈ 𝑁 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) ) |
23 |
22
|
simprd |
⊢ ( ( 𝑆 ∈ 𝑁 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ ( 𝐴 ∖ 𝐵 ) = ∪ 𝑧 ) ) |