Metamath Proof Explorer


Theorem diffiunisros

Description: In semiring of sets, complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 N = s 𝒫 𝒫 O | s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z
Assertion diffiunisros S N A S B S z 𝒫 S z Fin Disj t z t A B = z

Proof

Step Hyp Ref Expression
1 issros.1 N = s 𝒫 𝒫 O | s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z
2 simp2 S N A S B S A S
3 simp3 S N A S B S B S
4 1 issros S N S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
5 4 simp3bi S N x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
6 5 3ad2ant1 S N A S B S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
7 ineq1 x = A x y = A y
8 7 eleq1d x = A x y S A y S
9 difeq1 x = A x y = A y
10 9 eqeq1d x = A x y = z A y = z
11 10 3anbi3d x = A z Fin Disj t z t x y = z z Fin Disj t z t A y = z
12 11 rexbidv x = A z 𝒫 S z Fin Disj t z t x y = z z 𝒫 S z Fin Disj t z t A y = z
13 8 12 anbi12d x = A x y S z 𝒫 S z Fin Disj t z t x y = z A y S z 𝒫 S z Fin Disj t z t A y = z
14 ineq2 y = B A y = A B
15 14 eleq1d y = B A y S A B S
16 difeq2 y = B A y = A B
17 16 eqeq1d y = B A y = z A B = z
18 17 3anbi3d y = B z Fin Disj t z t A y = z z Fin Disj t z t A B = z
19 18 rexbidv y = B z 𝒫 S z Fin Disj t z t A y = z z 𝒫 S z Fin Disj t z t A B = z
20 15 19 anbi12d y = B A y S z 𝒫 S z Fin Disj t z t A y = z A B S z 𝒫 S z Fin Disj t z t A B = z
21 13 20 rspc2va A S B S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z A B S z 𝒫 S z Fin Disj t z t A B = z
22 2 3 6 21 syl21anc S N A S B S A B S z 𝒫 S z Fin Disj t z t A B = z
23 22 simprd S N A S B S z 𝒫 S z Fin Disj t z t A B = z