| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rossros.q | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
						
							| 2 |  | rossros.n | ⊢ 𝑁  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∩  𝑦 )  ∈  𝑠  ∧  ∃ 𝑧  ∈  𝒫  𝑠 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) } | 
						
							| 3 | 1 | rossspw | ⊢ ( 𝑆  ∈  𝑄  →  𝑆  ⊆  𝒫  𝑂 ) | 
						
							| 4 |  | elpwg | ⊢ ( 𝑆  ∈  𝑄  →  ( 𝑆  ∈  𝒫  𝒫  𝑂  ↔  𝑆  ⊆  𝒫  𝑂 ) ) | 
						
							| 5 | 3 4 | mpbird | ⊢ ( 𝑆  ∈  𝑄  →  𝑆  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 6 | 1 | 0elros | ⊢ ( 𝑆  ∈  𝑄  →  ∅  ∈  𝑆 ) | 
						
							| 7 |  | uneq1 | ⊢ ( 𝑢  =  𝑥  →  ( 𝑢  ∪  𝑣 )  =  ( 𝑥  ∪  𝑣 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑢  =  𝑥  →  ( ( 𝑢  ∪  𝑣 )  ∈  𝑠  ↔  ( 𝑥  ∪  𝑣 )  ∈  𝑠 ) ) | 
						
							| 9 |  | difeq1 | ⊢ ( 𝑢  =  𝑥  →  ( 𝑢  ∖  𝑣 )  =  ( 𝑥  ∖  𝑣 ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑢  =  𝑥  →  ( ( 𝑢  ∖  𝑣 )  ∈  𝑠  ↔  ( 𝑥  ∖  𝑣 )  ∈  𝑠 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑢  =  𝑥  →  ( ( ( 𝑢  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑠 )  ↔  ( ( 𝑥  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑣 )  ∈  𝑠 ) ) ) | 
						
							| 12 |  | uneq2 | ⊢ ( 𝑣  =  𝑦  →  ( 𝑥  ∪  𝑣 )  =  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑣  =  𝑦  →  ( ( 𝑥  ∪  𝑣 )  ∈  𝑠  ↔  ( 𝑥  ∪  𝑦 )  ∈  𝑠 ) ) | 
						
							| 14 |  | difeq2 | ⊢ ( 𝑣  =  𝑦  →  ( 𝑥  ∖  𝑣 )  =  ( 𝑥  ∖  𝑦 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑣  =  𝑦  →  ( ( 𝑥  ∖  𝑣 )  ∈  𝑠  ↔  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) | 
						
							| 16 | 13 15 | anbi12d | ⊢ ( 𝑣  =  𝑦  →  ( ( ( 𝑥  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑣 )  ∈  𝑠 )  ↔  ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) ) | 
						
							| 17 | 11 16 | cbvral2vw | ⊢ ( ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( ( 𝑢  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑠 )  ↔  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) | 
						
							| 18 | 17 | anbi2i | ⊢ ( ( ∅  ∈  𝑠  ∧  ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( ( 𝑢  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑠 ) )  ↔  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) ) | 
						
							| 19 | 18 | rabbii | ⊢ { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( ( 𝑢  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑠 ) ) }  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
						
							| 20 | 1 19 | eqtr4i | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( ( 𝑢  ∪  𝑣 )  ∈  𝑠  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑠 ) ) } | 
						
							| 21 | 20 | inelros | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝑆 ) | 
						
							| 22 | 21 | 3expb | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝑆 ) | 
						
							| 23 | 20 | difelros | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) | 
						
							| 24 | 23 | 3expb | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) | 
						
							| 25 | 24 | snssd | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  { ( 𝑥  ∖  𝑦 ) }  ⊆  𝑆 ) | 
						
							| 26 |  | snex | ⊢ { ( 𝑥  ∖  𝑦 ) }  ∈  V | 
						
							| 27 | 26 | elpw | ⊢ ( { ( 𝑥  ∖  𝑦 ) }  ∈  𝒫  𝑆  ↔  { ( 𝑥  ∖  𝑦 ) }  ⊆  𝑆 ) | 
						
							| 28 | 25 27 | sylibr | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  { ( 𝑥  ∖  𝑦 ) }  ∈  𝒫  𝑆 ) | 
						
							| 29 |  | snfi | ⊢ { ( 𝑥  ∖  𝑦 ) }  ∈  Fin | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  { ( 𝑥  ∖  𝑦 ) }  ∈  Fin ) | 
						
							| 31 |  | disjxsn | ⊢ Disj  𝑡  ∈  { ( 𝑥  ∖  𝑦 ) } 𝑡 | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  Disj  𝑡  ∈  { ( 𝑥  ∖  𝑦 ) } 𝑡 ) | 
						
							| 33 |  | unisng | ⊢ ( ( 𝑥  ∖  𝑦 )  ∈  𝑆  →  ∪  { ( 𝑥  ∖  𝑦 ) }  =  ( 𝑥  ∖  𝑦 ) ) | 
						
							| 34 | 24 33 | syl | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ∪  { ( 𝑥  ∖  𝑦 ) }  =  ( 𝑥  ∖  𝑦 ) ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ∖  𝑦 )  =  ∪  { ( 𝑥  ∖  𝑦 ) } ) | 
						
							| 36 |  | eleq1 | ⊢ ( 𝑧  =  { ( 𝑥  ∖  𝑦 ) }  →  ( 𝑧  ∈  Fin  ↔  { ( 𝑥  ∖  𝑦 ) }  ∈  Fin ) ) | 
						
							| 37 |  | disjeq1 | ⊢ ( 𝑧  =  { ( 𝑥  ∖  𝑦 ) }  →  ( Disj  𝑡  ∈  𝑧 𝑡  ↔  Disj  𝑡  ∈  { ( 𝑥  ∖  𝑦 ) } 𝑡 ) ) | 
						
							| 38 |  | unieq | ⊢ ( 𝑧  =  { ( 𝑥  ∖  𝑦 ) }  →  ∪  𝑧  =  ∪  { ( 𝑥  ∖  𝑦 ) } ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( 𝑧  =  { ( 𝑥  ∖  𝑦 ) }  →  ( ( 𝑥  ∖  𝑦 )  =  ∪  𝑧  ↔  ( 𝑥  ∖  𝑦 )  =  ∪  { ( 𝑥  ∖  𝑦 ) } ) ) | 
						
							| 40 | 36 37 39 | 3anbi123d | ⊢ ( 𝑧  =  { ( 𝑥  ∖  𝑦 ) }  →  ( ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 )  ↔  ( { ( 𝑥  ∖  𝑦 ) }  ∈  Fin  ∧  Disj  𝑡  ∈  { ( 𝑥  ∖  𝑦 ) } 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  { ( 𝑥  ∖  𝑦 ) } ) ) ) | 
						
							| 41 | 40 | rspcev | ⊢ ( ( { ( 𝑥  ∖  𝑦 ) }  ∈  𝒫  𝑆  ∧  ( { ( 𝑥  ∖  𝑦 ) }  ∈  Fin  ∧  Disj  𝑡  ∈  { ( 𝑥  ∖  𝑦 ) } 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  { ( 𝑥  ∖  𝑦 ) } ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) | 
						
							| 42 | 28 30 32 35 41 | syl13anc | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) | 
						
							| 43 | 22 42 | jca | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 44 | 43 | ralrimivva | ⊢ ( 𝑆  ∈  𝑄  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) | 
						
							| 45 | 5 6 44 | 3jca | ⊢ ( 𝑆  ∈  𝑄  →  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 46 | 2 | issros | ⊢ ( 𝑆  ∈  𝑁  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∩  𝑦 )  ∈  𝑆  ∧  ∃ 𝑧  ∈  𝒫  𝑆 ( 𝑧  ∈  Fin  ∧  Disj  𝑡  ∈  𝑧 𝑡  ∧  ( 𝑥  ∖  𝑦 )  =  ∪  𝑧 ) ) ) ) | 
						
							| 47 | 45 46 | sylibr | ⊢ ( 𝑆  ∈  𝑄  →  𝑆  ∈  𝑁 ) |