| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isros.1 | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝐴  ∈  𝑆 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝐵  ∈  𝑆 ) | 
						
							| 4 | 1 | isros | ⊢ ( 𝑆  ∈  𝑄  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) ) | 
						
							| 5 | 4 | simp3bi | ⊢ ( 𝑆  ∈  𝑄  →  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) | 
						
							| 7 |  | uneq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢  ∪  𝑣 )  =  ( 𝐴  ∪  𝑣 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑢  =  𝐴  →  ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ↔  ( 𝐴  ∪  𝑣 )  ∈  𝑆 ) ) | 
						
							| 9 |  | difeq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢  ∖  𝑣 )  =  ( 𝐴  ∖  𝑣 ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑢  =  𝐴  →  ( ( 𝑢  ∖  𝑣 )  ∈  𝑆  ↔  ( 𝐴  ∖  𝑣 )  ∈  𝑆 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑢  =  𝐴  →  ( ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 )  ↔  ( ( 𝐴  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝐴  ∖  𝑣 )  ∈  𝑆 ) ) ) | 
						
							| 12 |  | uneq2 | ⊢ ( 𝑣  =  𝐵  →  ( 𝐴  ∪  𝑣 )  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑣  =  𝐵  →  ( ( 𝐴  ∪  𝑣 )  ∈  𝑆  ↔  ( 𝐴  ∪  𝐵 )  ∈  𝑆 ) ) | 
						
							| 14 |  | difeq2 | ⊢ ( 𝑣  =  𝐵  →  ( 𝐴  ∖  𝑣 )  =  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑣  =  𝐵  →  ( ( 𝐴  ∖  𝑣 )  ∈  𝑆  ↔  ( 𝐴  ∖  𝐵 )  ∈  𝑆 ) ) | 
						
							| 16 | 13 15 | anbi12d | ⊢ ( 𝑣  =  𝐵  →  ( ( ( 𝐴  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝐴  ∖  𝑣 )  ∈  𝑆 )  ↔  ( ( 𝐴  ∪  𝐵 )  ∈  𝑆  ∧  ( 𝐴  ∖  𝐵 )  ∈  𝑆 ) ) ) | 
						
							| 17 | 11 16 | rspc2va | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ∧  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) )  →  ( ( 𝐴  ∪  𝐵 )  ∈  𝑆  ∧  ( 𝐴  ∖  𝐵 )  ∈  𝑆 ) ) | 
						
							| 18 | 2 3 6 17 | syl21anc | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴  ∪  𝐵 )  ∈  𝑆  ∧  ( 𝐴  ∖  𝐵 )  ∈  𝑆 ) ) | 
						
							| 19 | 18 | simprd | ⊢ ( ( 𝑆  ∈  𝑄  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ∖  𝐵 )  ∈  𝑆 ) |