Step |
Hyp |
Ref |
Expression |
1 |
|
isros.1 |
⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } |
2 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
3 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑆 ) |
4 |
1
|
isros |
⊢ ( 𝑆 ∈ 𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) ) |
5 |
4
|
simp3bi |
⊢ ( 𝑆 ∈ 𝑄 → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) |
7 |
|
uneq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 ∪ 𝑣 ) = ( 𝐴 ∪ 𝑣 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ↔ ( 𝐴 ∪ 𝑣 ) ∈ 𝑆 ) ) |
9 |
|
difeq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 ∖ 𝑣 ) = ( 𝐴 ∖ 𝑣 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ↔ ( 𝐴 ∖ 𝑣 ) ∈ 𝑆 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝐴 ∖ 𝑣 ) ∈ 𝑆 ) ) ) |
12 |
|
uneq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐴 ∪ 𝑣 ) = ( 𝐴 ∪ 𝐵 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝐴 ∪ 𝑣 ) ∈ 𝑆 ↔ ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) ) |
14 |
|
difeq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐴 ∖ 𝑣 ) = ( 𝐴 ∖ 𝐵 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝑆 ↔ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ) |
16 |
13 15
|
anbi12d |
⊢ ( 𝑣 = 𝐵 → ( ( ( 𝐴 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝐴 ∖ 𝑣 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ) ) |
17 |
11 16
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ) |
18 |
2 3 6 17
|
syl21anc |
⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) ) |
19 |
18
|
simprd |
⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |