Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isros.1 | ⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } | |
| Assertion | inelros | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isros.1 | ⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } | |
| 2 | dfin4 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) | |
| 3 | 1 | difelros | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) | 
| 4 | 1 | difelros | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ∈ 𝑆 ) | 
| 5 | 3 4 | syld3an3 | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ∈ 𝑆 ) | 
| 6 | 2 5 | eqeltrid | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |