Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isros.1 | ⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } | |
Assertion | inelros | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isros.1 | ⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } | |
2 | dfin4 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) | |
3 | 1 | difelros | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |
4 | 1 | difelros | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ∈ 𝑆 ) |
5 | 3 4 | syld3an3 | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ∈ 𝑆 ) |
6 | 2 5 | eqeltrid | ⊢ ( ( 𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |