Metamath Proof Explorer


Theorem inelros

Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypothesis isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
Assertion inelros ( ( 𝑆𝑄𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
2 dfin4 ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )
3 1 difelros ( ( 𝑆𝑄𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )
4 1 difelros ( ( 𝑆𝑄𝐴𝑆 ∧ ( 𝐴𝐵 ) ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴𝐵 ) ) ∈ 𝑆 )
5 3 4 syld3an3 ( ( 𝑆𝑄𝐴𝑆𝐵𝑆 ) → ( 𝐴 ∖ ( 𝐴𝐵 ) ) ∈ 𝑆 )
6 2 5 eqeltrid ( ( 𝑆𝑄𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )