Metamath Proof Explorer


Theorem inelros

Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypothesis isros.1
|- Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) }
Assertion inelros
|- ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A i^i B ) e. S )

Proof

Step Hyp Ref Expression
1 isros.1
 |-  Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) }
2 dfin4
 |-  ( A i^i B ) = ( A \ ( A \ B ) )
3 1 difelros
 |-  ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A \ B ) e. S )
4 1 difelros
 |-  ( ( S e. Q /\ A e. S /\ ( A \ B ) e. S ) -> ( A \ ( A \ B ) ) e. S )
5 3 4 syld3an3
 |-  ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A \ ( A \ B ) ) e. S )
6 2 5 eqeltrid
 |-  ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A i^i B ) e. S )