Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isros.1 | |- Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) } |
|
Assertion | inelros | |- ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A i^i B ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isros.1 | |- Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) } |
|
2 | dfin4 | |- ( A i^i B ) = ( A \ ( A \ B ) ) |
|
3 | 1 | difelros | |- ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A \ B ) e. S ) |
4 | 1 | difelros | |- ( ( S e. Q /\ A e. S /\ ( A \ B ) e. S ) -> ( A \ ( A \ B ) ) e. S ) |
5 | 3 4 | syld3an3 | |- ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A \ ( A \ B ) ) e. S ) |
6 | 2 5 | eqeltrid | |- ( ( S e. Q /\ A e. S /\ B e. S ) -> ( A i^i B ) e. S ) |