Metamath Proof Explorer


Theorem inelros

Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypothesis isros.1 Q = s 𝒫 𝒫 O | s x s y s x y s x y s
Assertion inelros S Q A S B S A B S

Proof

Step Hyp Ref Expression
1 isros.1 Q = s 𝒫 𝒫 O | s x s y s x y s x y s
2 dfin4 A B = A A B
3 1 difelros S Q A S B S A B S
4 1 difelros S Q A S A B S A A B S
5 3 4 syld3an3 S Q A S B S A A B S
6 2 5 eqeltrid S Q A S B S A B S