| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isros.1 | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
						
							| 2 |  | fiunelros.1 | ⊢ ( 𝜑  →  𝑆  ∈  𝑄 ) | 
						
							| 3 |  | fiunelros.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | fiunelros.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ..^ 𝑁 ) )  →  𝐵  ∈  𝑆 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 6 | 5 | nnred | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 7 | 6 | leidd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝑁  ≤  𝑁 ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  ≤  𝑁  ↔  1  ≤  𝑁 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 1 ) ) | 
						
							| 10 | 9 | iuneq1d | ⊢ ( 𝑛  =  1  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵 ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑛  =  1  →  ( ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆  ↔  ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  ∈  𝑆 ) ) | 
						
							| 12 | 8 11 | imbi12d | ⊢ ( 𝑛  =  1  →  ( ( 𝑛  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆 )  ↔  ( 1  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  ∈  𝑆 ) ) ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ≤  𝑁  ↔  𝑖  ≤  𝑁 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑛  =  𝑖  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 𝑖 ) ) | 
						
							| 15 | 14 | iuneq1d | ⊢ ( 𝑛  =  𝑖  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵 ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑛  =  𝑖  →  ( ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆  ↔  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) ) | 
						
							| 17 | 13 16 | imbi12d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝑛  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆 )  ↔  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) ) ) | 
						
							| 18 |  | breq1 | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ( 𝑛  ≤  𝑁  ↔  ( 𝑖  +  1 )  ≤  𝑁 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ ( 𝑖  +  1 ) ) ) | 
						
							| 20 | 19 | iuneq1d | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵 ) | 
						
							| 21 | 20 | eleq1d | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ( ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆  ↔  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  ∈  𝑆 ) ) | 
						
							| 22 | 18 21 | imbi12d | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ( ( 𝑛  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆 )  ↔  ( ( 𝑖  +  1 )  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  ∈  𝑆 ) ) ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ≤  𝑁  ↔  𝑁  ≤  𝑁 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 𝑁 ) ) | 
						
							| 25 | 24 | iuneq1d | ⊢ ( 𝑛  =  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 𝑁 ) 𝐵 ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑛  =  𝑁  →  ( ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆  ↔  ∪  𝑘  ∈  ( 1 ..^ 𝑁 ) 𝐵  ∈  𝑆 ) ) | 
						
							| 27 | 23 26 | imbi12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  ∈  𝑆 )  ↔  ( 𝑁  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑁 ) 𝐵  ∈  𝑆 ) ) ) | 
						
							| 28 |  | fzo0 | ⊢ ( 1 ..^ 1 )  =  ∅ | 
						
							| 29 |  | iuneq1 | ⊢ ( ( 1 ..^ 1 )  =  ∅  →  ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  =  ∪  𝑘  ∈  ∅ 𝐵 ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  =  ∪  𝑘  ∈  ∅ 𝐵 | 
						
							| 31 |  | 0iun | ⊢ ∪  𝑘  ∈  ∅ 𝐵  =  ∅ | 
						
							| 32 | 30 31 | eqtri | ⊢ ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  =  ∅ | 
						
							| 33 | 1 | 0elros | ⊢ ( 𝑆  ∈  𝑄  →  ∅  ∈  𝑆 ) | 
						
							| 34 | 2 33 | syl | ⊢ ( 𝜑  →  ∅  ∈  𝑆 ) | 
						
							| 35 | 32 34 | eqeltrid | ⊢ ( 𝜑  →  ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  ∈  𝑆 ) | 
						
							| 36 | 35 | a1d | ⊢ ( 𝜑  →  ( 1  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 1 ) 𝐵  ∈  𝑆 ) ) | 
						
							| 37 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑖  ∈  ℕ ) | 
						
							| 38 |  | fzosplitsn | ⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ..^ ( 𝑖  +  1 ) )  =  ( ( 1 ..^ 𝑖 )  ∪  { 𝑖 } ) ) | 
						
							| 39 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 40 | 38 39 | eleq2s | ⊢ ( 𝑖  ∈  ℕ  →  ( 1 ..^ ( 𝑖  +  1 ) )  =  ( ( 1 ..^ 𝑖 )  ∪  { 𝑖 } ) ) | 
						
							| 41 | 40 | iuneq1d | ⊢ ( 𝑖  ∈  ℕ  →  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  =  ∪  𝑘  ∈  ( ( 1 ..^ 𝑖 )  ∪  { 𝑖 } ) 𝐵 ) | 
						
							| 42 | 37 41 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  =  ∪  𝑘  ∈  ( ( 1 ..^ 𝑖 )  ∪  { 𝑖 } ) 𝐵 ) | 
						
							| 43 |  | iunxun | ⊢ ∪  𝑘  ∈  ( ( 1 ..^ 𝑖 )  ∪  { 𝑖 } ) 𝐵  =  ( ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∪  ∪  𝑘  ∈  { 𝑖 } 𝐵 ) | 
						
							| 44 | 42 43 | eqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  =  ( ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∪  ∪  𝑘  ∈  { 𝑖 } 𝐵 ) ) | 
						
							| 45 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑆  ∈  𝑄 ) | 
						
							| 46 | 37 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑖  ∈  ℝ ) | 
						
							| 47 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑁  ∈  ℕ ) | 
						
							| 48 | 47 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ( 𝑖  +  1 )  ≤  𝑁 ) | 
						
							| 50 |  | nnltp1le | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑖  <  𝑁  ↔  ( 𝑖  +  1 )  ≤  𝑁 ) ) | 
						
							| 51 | 37 47 50 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ( 𝑖  <  𝑁  ↔  ( 𝑖  +  1 )  ≤  𝑁 ) ) | 
						
							| 52 | 49 51 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑖  <  𝑁 ) | 
						
							| 53 | 46 48 52 | ltled | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑖  ≤  𝑁 ) | 
						
							| 54 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) ) | 
						
							| 55 | 53 54 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) | 
						
							| 56 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐵 | 
						
							| 57 |  | csbeq1a | ⊢ ( 𝑘  =  𝑖  →  𝐵  =  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) | 
						
							| 58 | 56 57 | iunxsngf | ⊢ ( 𝑖  ∈  ℕ  →  ∪  𝑘  ∈  { 𝑖 } 𝐵  =  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) | 
						
							| 59 | 37 58 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ∪  𝑘  ∈  { 𝑖 } 𝐵  =  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) | 
						
							| 60 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝜑 ) | 
						
							| 61 |  | elfzo1 | ⊢ ( 𝑖  ∈  ( 1 ..^ 𝑁 )  ↔  ( 𝑖  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑖  <  𝑁 ) ) | 
						
							| 62 | 37 47 52 61 | syl3anbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  𝑖  ∈  ( 1 ..^ 𝑁 ) ) | 
						
							| 63 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑁 ) ) | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑘 𝑆 | 
						
							| 65 | 56 64 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  𝑆 | 
						
							| 66 | 63 65 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑁 ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) | 
						
							| 67 |  | eleq1w | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ∈  ( 1 ..^ 𝑁 )  ↔  𝑖  ∈  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 68 | 67 | anbi2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝜑  ∧  𝑘  ∈  ( 1 ..^ 𝑁 ) )  ↔  ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑁 ) ) ) ) | 
						
							| 69 | 57 | eleq1d | ⊢ ( 𝑘  =  𝑖  →  ( 𝐵  ∈  𝑆  ↔  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) ) | 
						
							| 70 | 68 69 | imbi12d | ⊢ ( 𝑘  =  𝑖  →  ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ..^ 𝑁 ) )  →  𝐵  ∈  𝑆 )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑁 ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) ) ) | 
						
							| 71 | 66 70 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ..^ 𝑁 ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) | 
						
							| 72 | 60 62 71 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  𝑆 ) | 
						
							| 73 | 59 72 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ∪  𝑘  ∈  { 𝑖 } 𝐵  ∈  𝑆 ) | 
						
							| 74 | 1 | unelros | ⊢ ( ( 𝑆  ∈  𝑄  ∧  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆  ∧  ∪  𝑘  ∈  { 𝑖 } 𝐵  ∈  𝑆 )  →  ( ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∪  ∪  𝑘  ∈  { 𝑖 } 𝐵 )  ∈  𝑆 ) | 
						
							| 75 | 45 55 73 74 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∪  ∪  𝑘  ∈  { 𝑖 } 𝐵 )  ∈  𝑆 ) | 
						
							| 76 | 44 75 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  ∧  ( 𝑖  +  1 )  ≤  𝑁 )  →  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  ∈  𝑆 ) | 
						
							| 77 | 76 | ex | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑖 ) 𝐵  ∈  𝑆 ) )  →  ( ( 𝑖  +  1 )  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ ( 𝑖  +  1 ) ) 𝐵  ∈  𝑆 ) ) | 
						
							| 78 | 12 17 22 27 36 77 | nnindd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ≤  𝑁  →  ∪  𝑘  ∈  ( 1 ..^ 𝑁 ) 𝐵  ∈  𝑆 ) ) | 
						
							| 79 | 7 78 | mpd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ∪  𝑘  ∈  ( 1 ..^ 𝑁 ) 𝐵  ∈  𝑆 ) | 
						
							| 80 | 3 79 | mpdan | ⊢ ( 𝜑  →  ∪  𝑘  ∈  ( 1 ..^ 𝑁 ) 𝐵  ∈  𝑆 ) |