| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isros.1 |
⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } |
| 2 |
|
fiunelros.1 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑄 ) |
| 3 |
|
fiunelros.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
fiunelros.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) → 𝐵 ∈ 𝑆 ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 6 |
5
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 7 |
6
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ≤ 𝑁 ) |
| 8 |
|
breq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ≤ 𝑁 ↔ 1 ≤ 𝑁 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 1 ) ) |
| 10 |
9
|
iuneq1d |
⊢ ( 𝑛 = 1 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑛 = 1 → ( ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ↔ ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 ∈ 𝑆 ) ) |
| 12 |
8 11
|
imbi12d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) ↔ ( 1 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 ∈ 𝑆 ) ) ) |
| 13 |
|
breq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑛 = 𝑖 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑖 ) ) |
| 15 |
14
|
iuneq1d |
⊢ ( 𝑛 = 𝑖 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ↔ ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) |
| 17 |
13 16
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑛 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) ↔ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ) |
| 18 |
|
breq1 |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 𝑛 ≤ 𝑁 ↔ ( 𝑖 + 1 ) ≤ 𝑁 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 1 ..^ 𝑛 ) = ( 1 ..^ ( 𝑖 + 1 ) ) ) |
| 20 |
19
|
iuneq1d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ↔ ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 ∈ 𝑆 ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( ( 𝑛 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) ↔ ( ( 𝑖 + 1 ) ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 ∈ 𝑆 ) ) ) |
| 23 |
|
breq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑁 ) ) |
| 25 |
24
|
iuneq1d |
⊢ ( 𝑛 = 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐵 ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ↔ ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐵 ∈ 𝑆 ) ) |
| 27 |
23 26
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) ↔ ( 𝑁 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐵 ∈ 𝑆 ) ) ) |
| 28 |
|
fzo0 |
⊢ ( 1 ..^ 1 ) = ∅ |
| 29 |
|
iuneq1 |
⊢ ( ( 1 ..^ 1 ) = ∅ → ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵 ) |
| 30 |
28 29
|
ax-mp |
⊢ ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵 |
| 31 |
|
0iun |
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
| 32 |
30 31
|
eqtri |
⊢ ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 = ∅ |
| 33 |
1
|
0elros |
⊢ ( 𝑆 ∈ 𝑄 → ∅ ∈ 𝑆 ) |
| 34 |
2 33
|
syl |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 35 |
32 34
|
eqeltrid |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 ∈ 𝑆 ) |
| 36 |
35
|
a1d |
⊢ ( 𝜑 → ( 1 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 1 ) 𝐵 ∈ 𝑆 ) ) |
| 37 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑖 ∈ ℕ ) |
| 38 |
|
fzosplitsn |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ..^ ( 𝑖 + 1 ) ) = ( ( 1 ..^ 𝑖 ) ∪ { 𝑖 } ) ) |
| 39 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 40 |
38 39
|
eleq2s |
⊢ ( 𝑖 ∈ ℕ → ( 1 ..^ ( 𝑖 + 1 ) ) = ( ( 1 ..^ 𝑖 ) ∪ { 𝑖 } ) ) |
| 41 |
40
|
iuneq1d |
⊢ ( 𝑖 ∈ ℕ → ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 = ∪ 𝑘 ∈ ( ( 1 ..^ 𝑖 ) ∪ { 𝑖 } ) 𝐵 ) |
| 42 |
37 41
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 = ∪ 𝑘 ∈ ( ( 1 ..^ 𝑖 ) ∪ { 𝑖 } ) 𝐵 ) |
| 43 |
|
iunxun |
⊢ ∪ 𝑘 ∈ ( ( 1 ..^ 𝑖 ) ∪ { 𝑖 } ) 𝐵 = ( ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∪ ∪ 𝑘 ∈ { 𝑖 } 𝐵 ) |
| 44 |
42 43
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 = ( ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∪ ∪ 𝑘 ∈ { 𝑖 } 𝐵 ) ) |
| 45 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑆 ∈ 𝑄 ) |
| 46 |
37
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑖 ∈ ℝ ) |
| 47 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 48 |
47
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 49 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ( 𝑖 + 1 ) ≤ 𝑁 ) |
| 50 |
|
nnltp1le |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑖 < 𝑁 ↔ ( 𝑖 + 1 ) ≤ 𝑁 ) ) |
| 51 |
37 47 50
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ( 𝑖 < 𝑁 ↔ ( 𝑖 + 1 ) ≤ 𝑁 ) ) |
| 52 |
49 51
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑖 < 𝑁 ) |
| 53 |
46 48 52
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑖 ≤ 𝑁 ) |
| 54 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) |
| 55 |
53 54
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) |
| 56 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
| 57 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
| 58 |
56 57
|
iunxsngf |
⊢ ( 𝑖 ∈ ℕ → ∪ 𝑘 ∈ { 𝑖 } 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
| 59 |
37 58
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ∪ 𝑘 ∈ { 𝑖 } 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
| 60 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝜑 ) |
| 61 |
|
elfzo1 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑖 < 𝑁 ) ) |
| 62 |
37 47 52 61
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → 𝑖 ∈ ( 1 ..^ 𝑁 ) ) |
| 63 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑁 ) ) |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑆 |
| 65 |
56 64
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 |
| 66 |
63 65
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑁 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
| 67 |
|
eleq1w |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ ( 1 ..^ 𝑁 ) ↔ 𝑖 ∈ ( 1 ..^ 𝑁 ) ) ) |
| 68 |
67
|
anbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑁 ) ) ) ) |
| 69 |
57
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 ∈ 𝑆 ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 70 |
68 69
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) → 𝐵 ∈ 𝑆 ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑁 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) ) ) |
| 71 |
66 70 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑁 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
| 72 |
60 62 71
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
| 73 |
59 72
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ∪ 𝑘 ∈ { 𝑖 } 𝐵 ∈ 𝑆 ) |
| 74 |
1
|
unelros |
⊢ ( ( 𝑆 ∈ 𝑄 ∧ ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ∧ ∪ 𝑘 ∈ { 𝑖 } 𝐵 ∈ 𝑆 ) → ( ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∪ ∪ 𝑘 ∈ { 𝑖 } 𝐵 ) ∈ 𝑆 ) |
| 75 |
45 55 73 74
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ( ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∪ ∪ 𝑘 ∈ { 𝑖 } 𝐵 ) ∈ 𝑆 ) |
| 76 |
44 75
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) ∧ ( 𝑖 + 1 ) ≤ 𝑁 ) → ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 ∈ 𝑆 ) |
| 77 |
76
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑖 ) 𝐵 ∈ 𝑆 ) ) → ( ( 𝑖 + 1 ) ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) 𝐵 ∈ 𝑆 ) ) |
| 78 |
12 17 22 27 36 77
|
nnindd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ≤ 𝑁 → ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐵 ∈ 𝑆 ) ) |
| 79 |
7 78
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐵 ∈ 𝑆 ) |
| 80 |
3 79
|
mpdan |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐵 ∈ 𝑆 ) |