| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ) |
| 2 |
|
eluzel2 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 3 |
2
|
3ad2ant3 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 5 |
|
eluzelz |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ℤ ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℤ ) |
| 7 |
|
ssfzunsnext |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 8 |
1 3 4 6 7
|
syl13anc |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 9 |
|
eluz2 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) ) |
| 10 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
| 11 |
10
|
rexrd |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ* ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝐼 ∈ ℝ* ) |
| 13 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 14 |
13
|
rexrd |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ∈ ℝ* ) |
| 16 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ≤ 𝐼 ) |
| 17 |
|
xrmineq |
⊢ ( ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
| 18 |
12 15 16 17
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
| 19 |
18
|
eqcomd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 20 |
9 19
|
sylbi |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 21 |
20
|
3ad2ant3 |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
| 22 |
21
|
oveq1d |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) = ( if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |
| 23 |
8 22
|
sseqtrrd |
⊢ ( ( 𝑆 ⊆ ( 𝑀 ... 𝑁 ) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ∪ { 𝐼 } ) ⊆ ( 𝑀 ... if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) ) ) |