Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones5.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones5.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones5.3 |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
4 |
|
eqid |
⊢ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } = { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } |
5 |
1 2 4 3
|
sticksstones4 |
⊢ ( 𝜑 → 𝐴 ≈ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) |
6 |
|
hasheni |
⊢ ( 𝐴 ≈ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) ) |
8 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
9 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
10 |
|
hashbc |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝐾 ∈ ℤ ) → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) C 𝐾 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) C 𝐾 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) = ( ( ♯ ‘ ( 1 ... 𝑁 ) ) C 𝐾 ) ) |
13 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) C 𝐾 ) = ( 𝑁 C 𝐾 ) ) |
16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑠 ) = 𝐾 } ) = ( 𝑁 C 𝐾 ) ) |
17 |
7 16
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( 𝑁 C 𝐾 ) ) |