| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones5.1 |
|- ( ph -> N e. NN0 ) |
| 2 |
|
sticksstones5.2 |
|- ( ph -> K e. NN0 ) |
| 3 |
|
sticksstones5.3 |
|- A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
| 4 |
|
eqid |
|- { s e. ~P ( 1 ... N ) | ( # ` s ) = K } = { s e. ~P ( 1 ... N ) | ( # ` s ) = K } |
| 5 |
1 2 4 3
|
sticksstones4 |
|- ( ph -> A ~~ { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) |
| 6 |
|
hasheni |
|- ( A ~~ { s e. ~P ( 1 ... N ) | ( # ` s ) = K } -> ( # ` A ) = ( # ` { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( # ` A ) = ( # ` { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) ) |
| 8 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 9 |
2
|
nn0zd |
|- ( ph -> K e. ZZ ) |
| 10 |
|
hashbc |
|- ( ( ( 1 ... N ) e. Fin /\ K e. ZZ ) -> ( ( # ` ( 1 ... N ) ) _C K ) = ( # ` { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ph -> ( ( # ` ( 1 ... N ) ) _C K ) = ( # ` { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( # ` { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) = ( ( # ` ( 1 ... N ) ) _C K ) ) |
| 13 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
| 14 |
1 13
|
syl |
|- ( ph -> ( # ` ( 1 ... N ) ) = N ) |
| 15 |
14
|
oveq1d |
|- ( ph -> ( ( # ` ( 1 ... N ) ) _C K ) = ( N _C K ) ) |
| 16 |
12 15
|
eqtrd |
|- ( ph -> ( # ` { s e. ~P ( 1 ... N ) | ( # ` s ) = K } ) = ( N _C K ) ) |
| 17 |
7 16
|
eqtrd |
|- ( ph -> ( # ` A ) = ( N _C K ) ) |