Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones4.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones4.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones4.3 |
|- B = { a e. ~P ( 1 ... N ) | ( # ` a ) = K } |
4 |
|
sticksstones4.4 |
|- A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
5 |
|
eqid |
|- ( p e. A |-> ran p ) = ( p e. A |-> ran p ) |
6 |
1 2 3 4 5
|
sticksstones2 |
|- ( ph -> ( p e. A |-> ran p ) : A -1-1-> B ) |
7 |
1 2 3 4 5
|
sticksstones3 |
|- ( ph -> ( p e. A |-> ran p ) : A -onto-> B ) |
8 |
6 7
|
jca |
|- ( ph -> ( ( p e. A |-> ran p ) : A -1-1-> B /\ ( p e. A |-> ran p ) : A -onto-> B ) ) |
9 |
|
df-f1o |
|- ( ( p e. A |-> ran p ) : A -1-1-onto-> B <-> ( ( p e. A |-> ran p ) : A -1-1-> B /\ ( p e. A |-> ran p ) : A -onto-> B ) ) |
10 |
8 9
|
sylibr |
|- ( ph -> ( p e. A |-> ran p ) : A -1-1-onto-> B ) |
11 |
|
simpl |
|- ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) -> f : ( 1 ... K ) --> ( 1 ... N ) ) |
12 |
11
|
a1i |
|- ( ph -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) -> f : ( 1 ... K ) --> ( 1 ... N ) ) ) |
13 |
12
|
ss2abdv |
|- ( ph -> { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } C_ { f | f : ( 1 ... K ) --> ( 1 ... N ) } ) |
14 |
|
fzfid |
|- ( ph -> ( 1 ... K ) e. Fin ) |
15 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
16 |
|
mapex |
|- ( ( ( 1 ... K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> { f | f : ( 1 ... K ) --> ( 1 ... N ) } e. _V ) |
17 |
14 15 16
|
syl2anc |
|- ( ph -> { f | f : ( 1 ... K ) --> ( 1 ... N ) } e. _V ) |
18 |
|
ssexg |
|- ( ( { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } C_ { f | f : ( 1 ... K ) --> ( 1 ... N ) } /\ { f | f : ( 1 ... K ) --> ( 1 ... N ) } e. _V ) -> { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } e. _V ) |
19 |
13 17 18
|
syl2anc |
|- ( ph -> { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } e. _V ) |
20 |
4
|
eleq1i |
|- ( A e. _V <-> { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } e. _V ) |
21 |
19 20
|
sylibr |
|- ( ph -> A e. _V ) |
22 |
21
|
mptexd |
|- ( ph -> ( p e. A |-> ran p ) e. _V ) |
23 |
|
f1oeq1 |
|- ( g = ( p e. A |-> ran p ) -> ( g : A -1-1-onto-> B <-> ( p e. A |-> ran p ) : A -1-1-onto-> B ) ) |
24 |
23
|
biimprd |
|- ( g = ( p e. A |-> ran p ) -> ( ( p e. A |-> ran p ) : A -1-1-onto-> B -> g : A -1-1-onto-> B ) ) |
25 |
24
|
adantl |
|- ( ( ph /\ g = ( p e. A |-> ran p ) ) -> ( ( p e. A |-> ran p ) : A -1-1-onto-> B -> g : A -1-1-onto-> B ) ) |
26 |
22 25
|
spcimedv |
|- ( ph -> ( ( p e. A |-> ran p ) : A -1-1-onto-> B -> E. g g : A -1-1-onto-> B ) ) |
27 |
10 26
|
mpd |
|- ( ph -> E. g g : A -1-1-onto-> B ) |
28 |
|
bren |
|- ( A ~~ B <-> E. g g : A -1-1-onto-> B ) |
29 |
27 28
|
sylibr |
|- ( ph -> A ~~ B ) |