Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones2.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones2.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones2.3 |
|- B = { a e. ~P ( 1 ... N ) | ( # ` a ) = K } |
4 |
|
sticksstones2.4 |
|- A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
5 |
|
sticksstones2.5 |
|- F = ( z e. A |-> ran z ) |
6 |
|
fveqeq2 |
|- ( a = ran z -> ( ( # ` a ) = K <-> ( # ` ran z ) = K ) ) |
7 |
|
fzfid |
|- ( ( ph /\ z e. A ) -> ( 1 ... N ) e. Fin ) |
8 |
|
eleq1w |
|- ( f = z -> ( f e. A <-> z e. A ) ) |
9 |
|
feq1 |
|- ( f = z -> ( f : ( 1 ... K ) --> ( 1 ... N ) <-> z : ( 1 ... K ) --> ( 1 ... N ) ) ) |
10 |
|
fveq1 |
|- ( f = z -> ( f ` x ) = ( z ` x ) ) |
11 |
|
fveq1 |
|- ( f = z -> ( f ` y ) = ( z ` y ) ) |
12 |
10 11
|
breq12d |
|- ( f = z -> ( ( f ` x ) < ( f ` y ) <-> ( z ` x ) < ( z ` y ) ) ) |
13 |
12
|
imbi2d |
|- ( f = z -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) |
14 |
13
|
ralbidv |
|- ( f = z -> ( A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) |
15 |
14
|
ralbidv |
|- ( f = z -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) |
16 |
9 15
|
anbi12d |
|- ( f = z -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) ) |
17 |
8 16
|
bibi12d |
|- ( f = z -> ( ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) <-> ( z e. A <-> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) ) ) |
18 |
|
abeq2 |
|- ( A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } <-> A. f ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) ) |
19 |
4 18
|
mpbi |
|- A. f ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
20 |
19
|
spi |
|- ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
21 |
17 20
|
chvarvv |
|- ( z e. A <-> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) |
22 |
21
|
biimpi |
|- ( z e. A -> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ph /\ z e. A ) -> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) ) |
24 |
23
|
simpld |
|- ( ( ph /\ z e. A ) -> z : ( 1 ... K ) --> ( 1 ... N ) ) |
25 |
24
|
frnd |
|- ( ( ph /\ z e. A ) -> ran z C_ ( 1 ... N ) ) |
26 |
7 25
|
sselpwd |
|- ( ( ph /\ z e. A ) -> ran z e. ~P ( 1 ... N ) ) |
27 |
24
|
ffnd |
|- ( ( ph /\ z e. A ) -> z Fn ( 1 ... K ) ) |
28 |
|
hashfn |
|- ( z Fn ( 1 ... K ) -> ( # ` z ) = ( # ` ( 1 ... K ) ) ) |
29 |
27 28
|
syl |
|- ( ( ph /\ z e. A ) -> ( # ` z ) = ( # ` ( 1 ... K ) ) ) |
30 |
2
|
adantr |
|- ( ( ph /\ z e. A ) -> K e. NN0 ) |
31 |
|
hashfz1 |
|- ( K e. NN0 -> ( # ` ( 1 ... K ) ) = K ) |
32 |
30 31
|
syl |
|- ( ( ph /\ z e. A ) -> ( # ` ( 1 ... K ) ) = K ) |
33 |
29 32
|
eqtrd |
|- ( ( ph /\ z e. A ) -> ( # ` z ) = K ) |
34 |
33
|
eqcomd |
|- ( ( ph /\ z e. A ) -> K = ( # ` z ) ) |
35 |
|
fzfid |
|- ( ( ph /\ z e. A ) -> ( 1 ... K ) e. Fin ) |
36 |
|
elfznn |
|- ( a e. ( 1 ... K ) -> a e. NN ) |
37 |
36
|
3ad2ant3 |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> a e. NN ) |
38 |
37
|
nnred |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> a e. RR ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> a e. RR ) |
40 |
|
elfznn |
|- ( b e. ( 1 ... K ) -> b e. NN ) |
41 |
40
|
nnred |
|- ( b e. ( 1 ... K ) -> b e. RR ) |
42 |
41
|
adantl |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> b e. RR ) |
43 |
|
lttri2 |
|- ( ( a e. RR /\ b e. RR ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) |
44 |
39 42 43
|
syl2anc |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( a =/= b <-> ( a < b \/ b < a ) ) ) |
45 |
24
|
3adant3 |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> z : ( 1 ... K ) --> ( 1 ... N ) ) |
46 |
|
simp3 |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> a e. ( 1 ... K ) ) |
47 |
45 46
|
ffvelrnd |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> ( z ` a ) e. ( 1 ... N ) ) |
48 |
47
|
adantr |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( z ` a ) e. ( 1 ... N ) ) |
49 |
48
|
adantr |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ a < b ) -> ( z ` a ) e. ( 1 ... N ) ) |
50 |
|
elfznn |
|- ( ( z ` a ) e. ( 1 ... N ) -> ( z ` a ) e. NN ) |
51 |
49 50
|
syl |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ a < b ) -> ( z ` a ) e. NN ) |
52 |
51
|
nnred |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ a < b ) -> ( z ` a ) e. RR ) |
53 |
23
|
simprd |
|- ( ( ph /\ z e. A ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) |
54 |
53
|
3adant3 |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) |
55 |
54
|
adantr |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) ) |
56 |
46
|
adantr |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> a e. ( 1 ... K ) ) |
57 |
|
simpr |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> b e. ( 1 ... K ) ) |
58 |
|
breq1 |
|- ( x = a -> ( x < y <-> a < y ) ) |
59 |
|
fveq2 |
|- ( x = a -> ( z ` x ) = ( z ` a ) ) |
60 |
59
|
breq1d |
|- ( x = a -> ( ( z ` x ) < ( z ` y ) <-> ( z ` a ) < ( z ` y ) ) ) |
61 |
58 60
|
imbi12d |
|- ( x = a -> ( ( x < y -> ( z ` x ) < ( z ` y ) ) <-> ( a < y -> ( z ` a ) < ( z ` y ) ) ) ) |
62 |
|
breq2 |
|- ( y = b -> ( a < y <-> a < b ) ) |
63 |
|
fveq2 |
|- ( y = b -> ( z ` y ) = ( z ` b ) ) |
64 |
63
|
breq2d |
|- ( y = b -> ( ( z ` a ) < ( z ` y ) <-> ( z ` a ) < ( z ` b ) ) ) |
65 |
62 64
|
imbi12d |
|- ( y = b -> ( ( a < y -> ( z ` a ) < ( z ` y ) ) <-> ( a < b -> ( z ` a ) < ( z ` b ) ) ) ) |
66 |
61 65
|
rspc2v |
|- ( ( a e. ( 1 ... K ) /\ b e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) -> ( a < b -> ( z ` a ) < ( z ` b ) ) ) ) |
67 |
56 57 66
|
syl2anc |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) -> ( a < b -> ( z ` a ) < ( z ` b ) ) ) ) |
68 |
55 67
|
mpd |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( a < b -> ( z ` a ) < ( z ` b ) ) ) |
69 |
68
|
imp |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ a < b ) -> ( z ` a ) < ( z ` b ) ) |
70 |
52 69
|
ltned |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ a < b ) -> ( z ` a ) =/= ( z ` b ) ) |
71 |
45
|
ffvelrnda |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( z ` b ) e. ( 1 ... N ) ) |
72 |
|
elfznn |
|- ( ( z ` b ) e. ( 1 ... N ) -> ( z ` b ) e. NN ) |
73 |
71 72
|
syl |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( z ` b ) e. NN ) |
74 |
73
|
nnred |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( z ` b ) e. RR ) |
75 |
74
|
adantr |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ b < a ) -> ( z ` b ) e. RR ) |
76 |
|
breq1 |
|- ( x = b -> ( x < y <-> b < y ) ) |
77 |
|
fveq2 |
|- ( x = b -> ( z ` x ) = ( z ` b ) ) |
78 |
77
|
breq1d |
|- ( x = b -> ( ( z ` x ) < ( z ` y ) <-> ( z ` b ) < ( z ` y ) ) ) |
79 |
76 78
|
imbi12d |
|- ( x = b -> ( ( x < y -> ( z ` x ) < ( z ` y ) ) <-> ( b < y -> ( z ` b ) < ( z ` y ) ) ) ) |
80 |
|
breq2 |
|- ( y = a -> ( b < y <-> b < a ) ) |
81 |
|
fveq2 |
|- ( y = a -> ( z ` y ) = ( z ` a ) ) |
82 |
81
|
breq2d |
|- ( y = a -> ( ( z ` b ) < ( z ` y ) <-> ( z ` b ) < ( z ` a ) ) ) |
83 |
80 82
|
imbi12d |
|- ( y = a -> ( ( b < y -> ( z ` b ) < ( z ` y ) ) <-> ( b < a -> ( z ` b ) < ( z ` a ) ) ) ) |
84 |
79 83
|
rspc2v |
|- ( ( b e. ( 1 ... K ) /\ a e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) -> ( b < a -> ( z ` b ) < ( z ` a ) ) ) ) |
85 |
57 56 84
|
syl2anc |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( z ` x ) < ( z ` y ) ) -> ( b < a -> ( z ` b ) < ( z ` a ) ) ) ) |
86 |
55 85
|
mpd |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( b < a -> ( z ` b ) < ( z ` a ) ) ) |
87 |
86
|
imp |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ b < a ) -> ( z ` b ) < ( z ` a ) ) |
88 |
75 87
|
ltned |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ b < a ) -> ( z ` b ) =/= ( z ` a ) ) |
89 |
88
|
necomd |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ b < a ) -> ( z ` a ) =/= ( z ` b ) ) |
90 |
70 89
|
jaodan |
|- ( ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) /\ ( a < b \/ b < a ) ) -> ( z ` a ) =/= ( z ` b ) ) |
91 |
90
|
ex |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( ( a < b \/ b < a ) -> ( z ` a ) =/= ( z ` b ) ) ) |
92 |
44 91
|
sylbid |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( a =/= b -> ( z ` a ) =/= ( z ` b ) ) ) |
93 |
92
|
necon4d |
|- ( ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) /\ b e. ( 1 ... K ) ) -> ( ( z ` a ) = ( z ` b ) -> a = b ) ) |
94 |
93
|
ralrimiva |
|- ( ( ph /\ z e. A /\ a e. ( 1 ... K ) ) -> A. b e. ( 1 ... K ) ( ( z ` a ) = ( z ` b ) -> a = b ) ) |
95 |
94
|
3expa |
|- ( ( ( ph /\ z e. A ) /\ a e. ( 1 ... K ) ) -> A. b e. ( 1 ... K ) ( ( z ` a ) = ( z ` b ) -> a = b ) ) |
96 |
95
|
ralrimiva |
|- ( ( ph /\ z e. A ) -> A. a e. ( 1 ... K ) A. b e. ( 1 ... K ) ( ( z ` a ) = ( z ` b ) -> a = b ) ) |
97 |
24 96
|
jca |
|- ( ( ph /\ z e. A ) -> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. a e. ( 1 ... K ) A. b e. ( 1 ... K ) ( ( z ` a ) = ( z ` b ) -> a = b ) ) ) |
98 |
|
dff13 |
|- ( z : ( 1 ... K ) -1-1-> ( 1 ... N ) <-> ( z : ( 1 ... K ) --> ( 1 ... N ) /\ A. a e. ( 1 ... K ) A. b e. ( 1 ... K ) ( ( z ` a ) = ( z ` b ) -> a = b ) ) ) |
99 |
97 98
|
sylibr |
|- ( ( ph /\ z e. A ) -> z : ( 1 ... K ) -1-1-> ( 1 ... N ) ) |
100 |
|
hashf1rn |
|- ( ( ( 1 ... K ) e. Fin /\ z : ( 1 ... K ) -1-1-> ( 1 ... N ) ) -> ( # ` z ) = ( # ` ran z ) ) |
101 |
35 99 100
|
syl2anc |
|- ( ( ph /\ z e. A ) -> ( # ` z ) = ( # ` ran z ) ) |
102 |
34 101
|
eqtrd |
|- ( ( ph /\ z e. A ) -> K = ( # ` ran z ) ) |
103 |
102
|
eqcomd |
|- ( ( ph /\ z e. A ) -> ( # ` ran z ) = K ) |
104 |
6 26 103
|
elrabd |
|- ( ( ph /\ z e. A ) -> ran z e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } ) |
105 |
3
|
eleq2i |
|- ( ran z e. B <-> ran z e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } ) |
106 |
105
|
a1i |
|- ( ( ph /\ z e. A ) -> ( ran z e. B <-> ran z e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } ) ) |
107 |
104 106
|
mpbird |
|- ( ( ph /\ z e. A ) -> ran z e. B ) |
108 |
107 5
|
fmptd |
|- ( ph -> F : A --> B ) |
109 |
1
|
3ad2ant1 |
|- ( ( ph /\ i e. A /\ j e. A ) -> N e. NN0 ) |
110 |
109
|
adantr |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> N e. NN0 ) |
111 |
2
|
3ad2ant1 |
|- ( ( ph /\ i e. A /\ j e. A ) -> K e. NN0 ) |
112 |
111
|
adantr |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> K e. NN0 ) |
113 |
|
simpl2 |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> i e. A ) |
114 |
|
simpl3 |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> j e. A ) |
115 |
|
simpr |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> i =/= j ) |
116 |
|
fveq2 |
|- ( r = s -> ( i ` r ) = ( i ` s ) ) |
117 |
|
fveq2 |
|- ( r = s -> ( j ` r ) = ( j ` s ) ) |
118 |
116 117
|
neeq12d |
|- ( r = s -> ( ( i ` r ) =/= ( j ` r ) <-> ( i ` s ) =/= ( j ` s ) ) ) |
119 |
118
|
cbvrabv |
|- { r e. ( 1 ... K ) | ( i ` r ) =/= ( j ` r ) } = { s e. ( 1 ... K ) | ( i ` s ) =/= ( j ` s ) } |
120 |
119
|
infeq1i |
|- inf ( { r e. ( 1 ... K ) | ( i ` r ) =/= ( j ` r ) } , RR , < ) = inf ( { s e. ( 1 ... K ) | ( i ` s ) =/= ( j ` s ) } , RR , < ) |
121 |
110 112 4 113 114 115 120
|
sticksstones1 |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ran i =/= ran j ) |
122 |
5
|
a1i |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> F = ( z e. A |-> ran z ) ) |
123 |
|
simpr |
|- ( ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) /\ z = i ) -> z = i ) |
124 |
123
|
rneqd |
|- ( ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) /\ z = i ) -> ran z = ran i ) |
125 |
|
fzfid |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ( 1 ... N ) e. Fin ) |
126 |
|
eleq1w |
|- ( f = i -> ( f e. A <-> i e. A ) ) |
127 |
|
feq1 |
|- ( f = i -> ( f : ( 1 ... K ) --> ( 1 ... N ) <-> i : ( 1 ... K ) --> ( 1 ... N ) ) ) |
128 |
|
fveq1 |
|- ( f = i -> ( f ` x ) = ( i ` x ) ) |
129 |
|
fveq1 |
|- ( f = i -> ( f ` y ) = ( i ` y ) ) |
130 |
128 129
|
breq12d |
|- ( f = i -> ( ( f ` x ) < ( f ` y ) <-> ( i ` x ) < ( i ` y ) ) ) |
131 |
130
|
imbi2d |
|- ( f = i -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) |
132 |
131
|
2ralbidv |
|- ( f = i -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) |
133 |
127 132
|
anbi12d |
|- ( f = i -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( i : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) ) |
134 |
126 133
|
bibi12d |
|- ( f = i -> ( ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) <-> ( i e. A <-> ( i : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) ) ) |
135 |
134 20
|
chvarvv |
|- ( i e. A <-> ( i : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) |
136 |
135
|
biimpi |
|- ( i e. A -> ( i : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) |
137 |
136
|
adantl |
|- ( ( ph /\ i e. A ) -> ( i : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( i ` x ) < ( i ` y ) ) ) ) |
138 |
137
|
simpld |
|- ( ( ph /\ i e. A ) -> i : ( 1 ... K ) --> ( 1 ... N ) ) |
139 |
138
|
3adant3 |
|- ( ( ph /\ i e. A /\ j e. A ) -> i : ( 1 ... K ) --> ( 1 ... N ) ) |
140 |
139
|
adantr |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> i : ( 1 ... K ) --> ( 1 ... N ) ) |
141 |
140
|
frnd |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ran i C_ ( 1 ... N ) ) |
142 |
125 141
|
sselpwd |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ran i e. ~P ( 1 ... N ) ) |
143 |
122 124 113 142
|
fvmptd |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ( F ` i ) = ran i ) |
144 |
|
simpr |
|- ( ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) /\ z = j ) -> z = j ) |
145 |
144
|
rneqd |
|- ( ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) /\ z = j ) -> ran z = ran j ) |
146 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
147 |
146
|
3ad2ant1 |
|- ( ( ph /\ i e. A /\ j e. A ) -> ( 1 ... N ) e. Fin ) |
148 |
|
eleq1w |
|- ( f = j -> ( f e. A <-> j e. A ) ) |
149 |
|
feq1 |
|- ( f = j -> ( f : ( 1 ... K ) --> ( 1 ... N ) <-> j : ( 1 ... K ) --> ( 1 ... N ) ) ) |
150 |
|
fveq1 |
|- ( f = j -> ( f ` x ) = ( j ` x ) ) |
151 |
|
fveq1 |
|- ( f = j -> ( f ` y ) = ( j ` y ) ) |
152 |
150 151
|
breq12d |
|- ( f = j -> ( ( f ` x ) < ( f ` y ) <-> ( j ` x ) < ( j ` y ) ) ) |
153 |
152
|
imbi2d |
|- ( f = j -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) |
154 |
153
|
2ralbidv |
|- ( f = j -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) |
155 |
149 154
|
anbi12d |
|- ( f = j -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( j : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) ) |
156 |
148 155
|
bibi12d |
|- ( f = j -> ( ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) <-> ( j e. A <-> ( j : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) ) ) |
157 |
156 20
|
chvarvv |
|- ( j e. A <-> ( j : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) |
158 |
157
|
biimpi |
|- ( j e. A -> ( j : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) |
159 |
158
|
adantl |
|- ( ( ph /\ j e. A ) -> ( j : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( j ` x ) < ( j ` y ) ) ) ) |
160 |
159
|
simpld |
|- ( ( ph /\ j e. A ) -> j : ( 1 ... K ) --> ( 1 ... N ) ) |
161 |
160
|
3adant2 |
|- ( ( ph /\ i e. A /\ j e. A ) -> j : ( 1 ... K ) --> ( 1 ... N ) ) |
162 |
161
|
frnd |
|- ( ( ph /\ i e. A /\ j e. A ) -> ran j C_ ( 1 ... N ) ) |
163 |
147 162
|
sselpwd |
|- ( ( ph /\ i e. A /\ j e. A ) -> ran j e. ~P ( 1 ... N ) ) |
164 |
163
|
adantr |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ran j e. ~P ( 1 ... N ) ) |
165 |
122 145 114 164
|
fvmptd |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ( F ` j ) = ran j ) |
166 |
121 143 165
|
3netr4d |
|- ( ( ( ph /\ i e. A /\ j e. A ) /\ i =/= j ) -> ( F ` i ) =/= ( F ` j ) ) |
167 |
166
|
ex |
|- ( ( ph /\ i e. A /\ j e. A ) -> ( i =/= j -> ( F ` i ) =/= ( F ` j ) ) ) |
168 |
167
|
necon4d |
|- ( ( ph /\ i e. A /\ j e. A ) -> ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
169 |
168
|
3expa |
|- ( ( ( ph /\ i e. A ) /\ j e. A ) -> ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
170 |
169
|
ralrimiva |
|- ( ( ph /\ i e. A ) -> A. j e. A ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
171 |
170
|
ralrimiva |
|- ( ph -> A. i e. A A. j e. A ( ( F ` i ) = ( F ` j ) -> i = j ) ) |
172 |
108 171
|
jca |
|- ( ph -> ( F : A --> B /\ A. i e. A A. j e. A ( ( F ` i ) = ( F ` j ) -> i = j ) ) ) |
173 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. i e. A A. j e. A ( ( F ` i ) = ( F ` j ) -> i = j ) ) ) |
174 |
172 173
|
sylibr |
|- ( ph -> F : A -1-1-> B ) |