Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones1.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones1.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones1.3 |
|- A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
4 |
|
sticksstones1.4 |
|- ( ph -> X e. A ) |
5 |
|
sticksstones1.5 |
|- ( ph -> Y e. A ) |
6 |
|
sticksstones1.6 |
|- ( ph -> X =/= Y ) |
7 |
|
sticksstones1.7 |
|- I = inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) |
8 |
7
|
a1i |
|- ( ph -> I = inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) ) |
9 |
|
ltso |
|- < Or RR |
10 |
9
|
a1i |
|- ( ph -> < Or RR ) |
11 |
|
fzfid |
|- ( ph -> ( 1 ... K ) e. Fin ) |
12 |
|
ssrab2 |
|- { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ ( 1 ... K ) |
13 |
12
|
a1i |
|- ( ph -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ ( 1 ... K ) ) |
14 |
|
ssfi |
|- ( ( ( 1 ... K ) e. Fin /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ ( 1 ... K ) ) -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin ) |
15 |
11 13 14
|
syl2anc |
|- ( ph -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin ) |
16 |
|
rabeq0 |
|- ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } = (/) <-> A. z e. ( 1 ... K ) -. ( X ` z ) =/= ( Y ` z ) ) |
17 |
|
nne |
|- ( -. ( X ` z ) =/= ( Y ` z ) <-> ( X ` z ) = ( Y ` z ) ) |
18 |
17
|
ralbii |
|- ( A. z e. ( 1 ... K ) -. ( X ` z ) =/= ( Y ` z ) <-> A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) |
19 |
16 18
|
bitri |
|- ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } = (/) <-> A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) |
20 |
|
feq1 |
|- ( f = X -> ( f : ( 1 ... K ) --> ( 1 ... N ) <-> X : ( 1 ... K ) --> ( 1 ... N ) ) ) |
21 |
|
fveq1 |
|- ( f = X -> ( f ` x ) = ( X ` x ) ) |
22 |
|
fveq1 |
|- ( f = X -> ( f ` y ) = ( X ` y ) ) |
23 |
21 22
|
breq12d |
|- ( f = X -> ( ( f ` x ) < ( f ` y ) <-> ( X ` x ) < ( X ` y ) ) ) |
24 |
23
|
imbi2d |
|- ( f = X -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( X ` x ) < ( X ` y ) ) ) ) |
25 |
24
|
2ralbidv |
|- ( f = X -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) ) |
26 |
20 25
|
anbi12d |
|- ( f = X -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( X : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) ) ) |
27 |
|
abeq2 |
|- ( A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } <-> A. f ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) ) |
28 |
3 27
|
mpbi |
|- A. f ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
29 |
28
|
spi |
|- ( f e. A <-> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
30 |
29
|
biimpi |
|- ( f e. A -> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
31 |
30
|
adantl |
|- ( ( ph /\ f e. A ) -> ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
32 |
31
|
ralrimiva |
|- ( ph -> A. f e. A ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) ) |
33 |
26 32 4
|
rspcdva |
|- ( ph -> ( X : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) ) |
34 |
33
|
simpld |
|- ( ph -> X : ( 1 ... K ) --> ( 1 ... N ) ) |
35 |
34
|
ffnd |
|- ( ph -> X Fn ( 1 ... K ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) -> X Fn ( 1 ... K ) ) |
37 |
|
feq1 |
|- ( f = Y -> ( f : ( 1 ... K ) --> ( 1 ... N ) <-> Y : ( 1 ... K ) --> ( 1 ... N ) ) ) |
38 |
|
fveq1 |
|- ( f = Y -> ( f ` x ) = ( Y ` x ) ) |
39 |
|
fveq1 |
|- ( f = Y -> ( f ` y ) = ( Y ` y ) ) |
40 |
38 39
|
breq12d |
|- ( f = Y -> ( ( f ` x ) < ( f ` y ) <-> ( Y ` x ) < ( Y ` y ) ) ) |
41 |
40
|
imbi2d |
|- ( f = Y -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) ) |
42 |
41
|
2ralbidv |
|- ( f = Y -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) ) |
43 |
37 42
|
anbi12d |
|- ( f = Y -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( Y : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) ) ) |
44 |
43 32 5
|
rspcdva |
|- ( ph -> ( Y : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) ) |
45 |
44
|
adantr |
|- ( ( ph /\ Y e. A ) -> ( Y : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) ) |
46 |
5 45
|
mpdan |
|- ( ph -> ( Y : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) ) |
47 |
46
|
simpld |
|- ( ph -> Y : ( 1 ... K ) --> ( 1 ... N ) ) |
48 |
47
|
ffnd |
|- ( ph -> Y Fn ( 1 ... K ) ) |
49 |
48
|
adantr |
|- ( ( ph /\ A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) -> Y Fn ( 1 ... K ) ) |
50 |
|
eqfnfv |
|- ( ( X Fn ( 1 ... K ) /\ Y Fn ( 1 ... K ) ) -> ( X = Y <-> A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) ) |
51 |
36 49 50
|
syl2anc |
|- ( ( ph /\ A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) -> ( X = Y <-> A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) ) |
52 |
51
|
bicomd |
|- ( ( ph /\ A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) -> ( A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) <-> X = Y ) ) |
53 |
52
|
biimpd |
|- ( ( ph /\ A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) -> ( A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) -> X = Y ) ) |
54 |
53
|
syldbl2 |
|- ( ( ph /\ A. z e. ( 1 ... K ) ( X ` z ) = ( Y ` z ) ) -> X = Y ) |
55 |
19 54
|
sylan2b |
|- ( ( ph /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } = (/) ) -> X = Y ) |
56 |
55
|
ex |
|- ( ph -> ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } = (/) -> X = Y ) ) |
57 |
56
|
necon3d |
|- ( ph -> ( X =/= Y -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } =/= (/) ) ) |
58 |
57
|
imp |
|- ( ( ph /\ X =/= Y ) -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } =/= (/) ) |
59 |
6 58
|
mpdan |
|- ( ph -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } =/= (/) ) |
60 |
|
fz1ssnn |
|- ( 1 ... K ) C_ NN |
61 |
60
|
a1i |
|- ( ph -> ( 1 ... K ) C_ NN ) |
62 |
|
nnssre |
|- NN C_ RR |
63 |
62
|
a1i |
|- ( ph -> NN C_ RR ) |
64 |
61 63
|
sstrd |
|- ( ph -> ( 1 ... K ) C_ RR ) |
65 |
13 64
|
sstrd |
|- ( ph -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ RR ) |
66 |
15 59 65
|
3jca |
|- ( ph -> ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } =/= (/) /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ RR ) ) |
67 |
|
fiinfcl |
|- ( ( < Or RR /\ ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } =/= (/) /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ RR ) ) -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) |
68 |
10 66 67
|
syl2anc |
|- ( ph -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) |
69 |
8 68
|
eqeltrd |
|- ( ph -> I e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) |
70 |
13 68
|
sseldd |
|- ( ph -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) e. ( 1 ... K ) ) |
71 |
8
|
eleq1d |
|- ( ph -> ( I e. ( 1 ... K ) <-> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) e. ( 1 ... K ) ) ) |
72 |
70 71
|
mpbird |
|- ( ph -> I e. ( 1 ... K ) ) |
73 |
|
fveq2 |
|- ( z = I -> ( X ` z ) = ( X ` I ) ) |
74 |
|
fveq2 |
|- ( z = I -> ( Y ` z ) = ( Y ` I ) ) |
75 |
73 74
|
neeq12d |
|- ( z = I -> ( ( X ` z ) =/= ( Y ` z ) <-> ( X ` I ) =/= ( Y ` I ) ) ) |
76 |
75
|
elrab3 |
|- ( I e. ( 1 ... K ) -> ( I e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } <-> ( X ` I ) =/= ( Y ` I ) ) ) |
77 |
72 76
|
syl |
|- ( ph -> ( I e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } <-> ( X ` I ) =/= ( Y ` I ) ) ) |
78 |
69 77
|
mpbid |
|- ( ph -> ( X ` I ) =/= ( Y ` I ) ) |
79 |
|
nfv |
|- F/ a ph |
80 |
|
nfcv |
|- F/_ a ( 1 ... N ) |
81 |
|
nfcv |
|- F/_ a RR |
82 |
|
elfznn |
|- ( a e. ( 1 ... N ) -> a e. NN ) |
83 |
82
|
adantl |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> a e. NN ) |
84 |
|
nnre |
|- ( a e. NN -> a e. RR ) |
85 |
83 84
|
syl |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> a e. RR ) |
86 |
85
|
ex |
|- ( ph -> ( a e. ( 1 ... N ) -> a e. RR ) ) |
87 |
79 80 81 86
|
ssrd |
|- ( ph -> ( 1 ... N ) C_ RR ) |
88 |
34 72
|
ffvelrnd |
|- ( ph -> ( X ` I ) e. ( 1 ... N ) ) |
89 |
87 88
|
sseldd |
|- ( ph -> ( X ` I ) e. RR ) |
90 |
47 72
|
ffvelrnd |
|- ( ph -> ( Y ` I ) e. ( 1 ... N ) ) |
91 |
87 90
|
sseldd |
|- ( ph -> ( Y ` I ) e. RR ) |
92 |
|
lttri2 |
|- ( ( ( X ` I ) e. RR /\ ( Y ` I ) e. RR ) -> ( ( X ` I ) =/= ( Y ` I ) <-> ( ( X ` I ) < ( Y ` I ) \/ ( Y ` I ) < ( X ` I ) ) ) ) |
93 |
89 91 92
|
syl2anc |
|- ( ph -> ( ( X ` I ) =/= ( Y ` I ) <-> ( ( X ` I ) < ( Y ` I ) \/ ( Y ` I ) < ( X ` I ) ) ) ) |
94 |
78 93
|
mpbid |
|- ( ph -> ( ( X ` I ) < ( Y ` I ) \/ ( Y ` I ) < ( X ` I ) ) ) |
95 |
34
|
ffund |
|- ( ph -> Fun X ) |
96 |
95
|
adantr |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> Fun X ) |
97 |
34
|
fdmd |
|- ( ph -> dom X = ( 1 ... K ) ) |
98 |
72 97
|
eleqtrrd |
|- ( ph -> I e. dom X ) |
99 |
98
|
adantr |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> I e. dom X ) |
100 |
|
fvelrn |
|- ( ( Fun X /\ I e. dom X ) -> ( X ` I ) e. ran X ) |
101 |
96 99 100
|
syl2anc |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> ( X ` I ) e. ran X ) |
102 |
|
elfznn |
|- ( j e. ( 1 ... K ) -> j e. NN ) |
103 |
102
|
3ad2ant3 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> j e. NN ) |
104 |
103
|
nnred |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> j e. RR ) |
105 |
64 72
|
sseldd |
|- ( ph -> I e. RR ) |
106 |
105
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> I e. RR ) |
107 |
104 106
|
lttri4d |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( j < I \/ j = I \/ I < j ) ) |
108 |
47
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> Y : ( 1 ... K ) --> ( 1 ... N ) ) |
109 |
|
simp3 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> j e. ( 1 ... K ) ) |
110 |
108 109
|
ffvelrnd |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( Y ` j ) e. ( 1 ... N ) ) |
111 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
112 |
111
|
sseli |
|- ( ( Y ` j ) e. ( 1 ... N ) -> ( Y ` j ) e. NN ) |
113 |
|
nnre |
|- ( ( Y ` j ) e. NN -> ( Y ` j ) e. RR ) |
114 |
112 113
|
syl |
|- ( ( Y ` j ) e. ( 1 ... N ) -> ( Y ` j ) e. RR ) |
115 |
110 114
|
syl |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( Y ` j ) e. RR ) |
116 |
115
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( Y ` j ) e. RR ) |
117 |
33
|
simprd |
|- ( ph -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) |
118 |
117
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) |
119 |
118
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) |
120 |
|
simpl3 |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> j e. ( 1 ... K ) ) |
121 |
72
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> I e. ( 1 ... K ) ) |
122 |
121
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> I e. ( 1 ... K ) ) |
123 |
|
breq1 |
|- ( x = j -> ( x < y <-> j < y ) ) |
124 |
|
fveq2 |
|- ( x = j -> ( X ` x ) = ( X ` j ) ) |
125 |
124
|
breq1d |
|- ( x = j -> ( ( X ` x ) < ( X ` y ) <-> ( X ` j ) < ( X ` y ) ) ) |
126 |
123 125
|
imbi12d |
|- ( x = j -> ( ( x < y -> ( X ` x ) < ( X ` y ) ) <-> ( j < y -> ( X ` j ) < ( X ` y ) ) ) ) |
127 |
|
breq2 |
|- ( y = I -> ( j < y <-> j < I ) ) |
128 |
|
fveq2 |
|- ( y = I -> ( X ` y ) = ( X ` I ) ) |
129 |
128
|
breq2d |
|- ( y = I -> ( ( X ` j ) < ( X ` y ) <-> ( X ` j ) < ( X ` I ) ) ) |
130 |
127 129
|
imbi12d |
|- ( y = I -> ( ( j < y -> ( X ` j ) < ( X ` y ) ) <-> ( j < I -> ( X ` j ) < ( X ` I ) ) ) ) |
131 |
126 130
|
rspc2v |
|- ( ( j e. ( 1 ... K ) /\ I e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) -> ( j < I -> ( X ` j ) < ( X ` I ) ) ) ) |
132 |
120 122 131
|
syl2anc |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) -> ( j < I -> ( X ` j ) < ( X ` I ) ) ) ) |
133 |
119 132
|
mpd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( j < I -> ( X ` j ) < ( X ` I ) ) ) |
134 |
133
|
syldbl2 |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) < ( X ` I ) ) |
135 |
|
simp2 |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> j e. ( 1 ... K ) ) |
136 |
|
simp3 |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> j < I ) |
137 |
102
|
3ad2ant2 |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> j e. NN ) |
138 |
137
|
nnred |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> j e. RR ) |
139 |
105
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> I e. RR ) |
140 |
138 139
|
ltnled |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( j < I <-> -. I <_ j ) ) |
141 |
136 140
|
mpbid |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> -. I <_ j ) |
142 |
65
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ RR ) |
143 |
15
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin ) |
144 |
|
infrefilb |
|- ( ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ RR /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin /\ j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) <_ j ) |
145 |
144
|
3expia |
|- ( ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } C_ RR /\ { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } e. Fin ) -> ( j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) <_ j ) ) |
146 |
142 143 145
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) <_ j ) ) |
147 |
146
|
imp |
|- ( ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) /\ j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) -> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) <_ j ) |
148 |
7
|
a1i |
|- ( ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) /\ j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) -> I = inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) ) |
149 |
148
|
breq1d |
|- ( ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) /\ j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) -> ( I <_ j <-> inf ( { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } , RR , < ) <_ j ) ) |
150 |
147 149
|
mpbird |
|- ( ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) /\ j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) -> I <_ j ) |
151 |
150
|
ex |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } -> I <_ j ) ) |
152 |
151
|
con3d |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( -. I <_ j -> -. j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) ) |
153 |
141 152
|
mpd |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> -. j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } ) |
154 |
|
nfcv |
|- F/_ z j |
155 |
|
nfcv |
|- F/_ z ( 1 ... K ) |
156 |
|
nfv |
|- F/ z ( X ` j ) =/= ( Y ` j ) |
157 |
|
fveq2 |
|- ( z = j -> ( X ` z ) = ( X ` j ) ) |
158 |
|
fveq2 |
|- ( z = j -> ( Y ` z ) = ( Y ` j ) ) |
159 |
157 158
|
neeq12d |
|- ( z = j -> ( ( X ` z ) =/= ( Y ` z ) <-> ( X ` j ) =/= ( Y ` j ) ) ) |
160 |
154 155 156 159
|
elrabf |
|- ( j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } <-> ( j e. ( 1 ... K ) /\ ( X ` j ) =/= ( Y ` j ) ) ) |
161 |
160
|
notbii |
|- ( -. j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } <-> -. ( j e. ( 1 ... K ) /\ ( X ` j ) =/= ( Y ` j ) ) ) |
162 |
|
ianor |
|- ( -. ( j e. ( 1 ... K ) /\ ( X ` j ) =/= ( Y ` j ) ) <-> ( -. j e. ( 1 ... K ) \/ -. ( X ` j ) =/= ( Y ` j ) ) ) |
163 |
161 162
|
bitri |
|- ( -. j e. { z e. ( 1 ... K ) | ( X ` z ) =/= ( Y ` z ) } <-> ( -. j e. ( 1 ... K ) \/ -. ( X ` j ) =/= ( Y ` j ) ) ) |
164 |
153 163
|
sylib |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( -. j e. ( 1 ... K ) \/ -. ( X ` j ) =/= ( Y ` j ) ) ) |
165 |
|
imor |
|- ( ( j e. ( 1 ... K ) -> -. ( X ` j ) =/= ( Y ` j ) ) <-> ( -. j e. ( 1 ... K ) \/ -. ( X ` j ) =/= ( Y ` j ) ) ) |
166 |
164 165
|
sylibr |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( j e. ( 1 ... K ) -> -. ( X ` j ) =/= ( Y ` j ) ) ) |
167 |
166
|
imp |
|- ( ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) /\ j e. ( 1 ... K ) ) -> -. ( X ` j ) =/= ( Y ` j ) ) |
168 |
|
nne |
|- ( -. ( X ` j ) =/= ( Y ` j ) <-> ( X ` j ) = ( Y ` j ) ) |
169 |
167 168
|
sylib |
|- ( ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) /\ j e. ( 1 ... K ) ) -> ( X ` j ) = ( Y ` j ) ) |
170 |
135 169
|
mpdan |
|- ( ( ph /\ j e. ( 1 ... K ) /\ j < I ) -> ( X ` j ) = ( Y ` j ) ) |
171 |
170
|
3expa |
|- ( ( ( ph /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) = ( Y ` j ) ) |
172 |
171
|
3adantl2 |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) = ( Y ` j ) ) |
173 |
172
|
eqcomd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( Y ` j ) = ( X ` j ) ) |
174 |
173
|
breq1d |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( ( Y ` j ) < ( X ` I ) <-> ( X ` j ) < ( X ` I ) ) ) |
175 |
134 174
|
mpbird |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( Y ` j ) < ( X ` I ) ) |
176 |
116 175
|
ltned |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( Y ` j ) =/= ( X ` I ) ) |
177 |
78
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` I ) =/= ( Y ` I ) ) |
178 |
177
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( X ` I ) =/= ( Y ` I ) ) |
179 |
178
|
necomd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( Y ` I ) =/= ( X ` I ) ) |
180 |
|
fveq2 |
|- ( j = I -> ( Y ` j ) = ( Y ` I ) ) |
181 |
180
|
neeq1d |
|- ( j = I -> ( ( Y ` j ) =/= ( X ` I ) <-> ( Y ` I ) =/= ( X ` I ) ) ) |
182 |
181
|
adantl |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( ( Y ` j ) =/= ( X ` I ) <-> ( Y ` I ) =/= ( X ` I ) ) ) |
183 |
179 182
|
mpbird |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( Y ` j ) =/= ( X ` I ) ) |
184 |
89
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` I ) e. RR ) |
185 |
184
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` I ) e. RR ) |
186 |
91
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( Y ` I ) e. RR ) |
187 |
186
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` I ) e. RR ) |
188 |
115
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` j ) e. RR ) |
189 |
|
simpl2 |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` I ) < ( Y ` I ) ) |
190 |
44
|
simprd |
|- ( ph -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) |
191 |
190
|
3ad2ant1 |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) |
192 |
191
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) |
193 |
121
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> I e. ( 1 ... K ) ) |
194 |
109
|
adantr |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> j e. ( 1 ... K ) ) |
195 |
|
breq1 |
|- ( x = I -> ( x < y <-> I < y ) ) |
196 |
|
fveq2 |
|- ( x = I -> ( Y ` x ) = ( Y ` I ) ) |
197 |
196
|
breq1d |
|- ( x = I -> ( ( Y ` x ) < ( Y ` y ) <-> ( Y ` I ) < ( Y ` y ) ) ) |
198 |
195 197
|
imbi12d |
|- ( x = I -> ( ( x < y -> ( Y ` x ) < ( Y ` y ) ) <-> ( I < y -> ( Y ` I ) < ( Y ` y ) ) ) ) |
199 |
|
breq2 |
|- ( y = j -> ( I < y <-> I < j ) ) |
200 |
|
fveq2 |
|- ( y = j -> ( Y ` y ) = ( Y ` j ) ) |
201 |
200
|
breq2d |
|- ( y = j -> ( ( Y ` I ) < ( Y ` y ) <-> ( Y ` I ) < ( Y ` j ) ) ) |
202 |
199 201
|
imbi12d |
|- ( y = j -> ( ( I < y -> ( Y ` I ) < ( Y ` y ) ) <-> ( I < j -> ( Y ` I ) < ( Y ` j ) ) ) ) |
203 |
198 202
|
rspc2v |
|- ( ( I e. ( 1 ... K ) /\ j e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) -> ( I < j -> ( Y ` I ) < ( Y ` j ) ) ) ) |
204 |
193 194 203
|
syl2anc |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) -> ( I < j -> ( Y ` I ) < ( Y ` j ) ) ) ) |
205 |
192 204
|
mpd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( I < j -> ( Y ` I ) < ( Y ` j ) ) ) |
206 |
205
|
syldbl2 |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` I ) < ( Y ` j ) ) |
207 |
185 187 188 189 206
|
lttrd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` I ) < ( Y ` j ) ) |
208 |
185 207
|
ltned |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` I ) =/= ( Y ` j ) ) |
209 |
208
|
necomd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` j ) =/= ( X ` I ) ) |
210 |
176 183 209
|
3jaodan |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) /\ ( j < I \/ j = I \/ I < j ) ) -> ( Y ` j ) =/= ( X ` I ) ) |
211 |
107 210
|
mpdan |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) /\ j e. ( 1 ... K ) ) -> ( Y ` j ) =/= ( X ` I ) ) |
212 |
211
|
3expa |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) ) /\ j e. ( 1 ... K ) ) -> ( Y ` j ) =/= ( X ` I ) ) |
213 |
212
|
neneqd |
|- ( ( ( ph /\ ( X ` I ) < ( Y ` I ) ) /\ j e. ( 1 ... K ) ) -> -. ( Y ` j ) = ( X ` I ) ) |
214 |
213
|
ralrimiva |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> A. j e. ( 1 ... K ) -. ( Y ` j ) = ( X ` I ) ) |
215 |
|
ralnex |
|- ( A. j e. ( 1 ... K ) -. ( Y ` j ) = ( X ` I ) <-> -. E. j e. ( 1 ... K ) ( Y ` j ) = ( X ` I ) ) |
216 |
215
|
a1i |
|- ( ph -> ( A. j e. ( 1 ... K ) -. ( Y ` j ) = ( X ` I ) <-> -. E. j e. ( 1 ... K ) ( Y ` j ) = ( X ` I ) ) ) |
217 |
|
nnel |
|- ( -. ( X ` I ) e/ ran Y <-> ( X ` I ) e. ran Y ) |
218 |
217
|
a1i |
|- ( ph -> ( -. ( X ` I ) e/ ran Y <-> ( X ` I ) e. ran Y ) ) |
219 |
|
fvelrnb |
|- ( Y Fn ( 1 ... K ) -> ( ( X ` I ) e. ran Y <-> E. j e. ( 1 ... K ) ( Y ` j ) = ( X ` I ) ) ) |
220 |
48 219
|
syl |
|- ( ph -> ( ( X ` I ) e. ran Y <-> E. j e. ( 1 ... K ) ( Y ` j ) = ( X ` I ) ) ) |
221 |
218 220
|
bitrd |
|- ( ph -> ( -. ( X ` I ) e/ ran Y <-> E. j e. ( 1 ... K ) ( Y ` j ) = ( X ` I ) ) ) |
222 |
221
|
con1bid |
|- ( ph -> ( -. E. j e. ( 1 ... K ) ( Y ` j ) = ( X ` I ) <-> ( X ` I ) e/ ran Y ) ) |
223 |
216 222
|
bitrd |
|- ( ph -> ( A. j e. ( 1 ... K ) -. ( Y ` j ) = ( X ` I ) <-> ( X ` I ) e/ ran Y ) ) |
224 |
223
|
adantr |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> ( A. j e. ( 1 ... K ) -. ( Y ` j ) = ( X ` I ) <-> ( X ` I ) e/ ran Y ) ) |
225 |
214 224
|
mpbid |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> ( X ` I ) e/ ran Y ) |
226 |
|
elnelne1 |
|- ( ( ( X ` I ) e. ran X /\ ( X ` I ) e/ ran Y ) -> ran X =/= ran Y ) |
227 |
101 225 226
|
syl2anc |
|- ( ( ph /\ ( X ` I ) < ( Y ` I ) ) -> ran X =/= ran Y ) |
228 |
47
|
ffund |
|- ( ph -> Fun Y ) |
229 |
228
|
adantr |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> Fun Y ) |
230 |
47
|
fdmd |
|- ( ph -> dom Y = ( 1 ... K ) ) |
231 |
72 230
|
eleqtrrd |
|- ( ph -> I e. dom Y ) |
232 |
231
|
adantr |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> I e. dom Y ) |
233 |
|
fvelrn |
|- ( ( Fun Y /\ I e. dom Y ) -> ( Y ` I ) e. ran Y ) |
234 |
229 232 233
|
syl2anc |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> ( Y ` I ) e. ran Y ) |
235 |
102
|
3ad2ant3 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> j e. NN ) |
236 |
235
|
nnred |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> j e. RR ) |
237 |
105
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> I e. RR ) |
238 |
236 237
|
lttri4d |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( j < I \/ j = I \/ I < j ) ) |
239 |
34
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> X : ( 1 ... K ) --> ( 1 ... N ) ) |
240 |
|
simp3 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> j e. ( 1 ... K ) ) |
241 |
239 240
|
ffvelrnd |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` j ) e. ( 1 ... N ) ) |
242 |
111
|
sseli |
|- ( ( X ` j ) e. ( 1 ... N ) -> ( X ` j ) e. NN ) |
243 |
241 242
|
syl |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` j ) e. NN ) |
244 |
243
|
nnred |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` j ) e. RR ) |
245 |
244
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) e. RR ) |
246 |
190
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) |
247 |
246
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) ) |
248 |
|
simpl3 |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> j e. ( 1 ... K ) ) |
249 |
72
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> I e. ( 1 ... K ) ) |
250 |
249
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> I e. ( 1 ... K ) ) |
251 |
|
fveq2 |
|- ( x = j -> ( Y ` x ) = ( Y ` j ) ) |
252 |
251
|
breq1d |
|- ( x = j -> ( ( Y ` x ) < ( Y ` y ) <-> ( Y ` j ) < ( Y ` y ) ) ) |
253 |
123 252
|
imbi12d |
|- ( x = j -> ( ( x < y -> ( Y ` x ) < ( Y ` y ) ) <-> ( j < y -> ( Y ` j ) < ( Y ` y ) ) ) ) |
254 |
|
fveq2 |
|- ( y = I -> ( Y ` y ) = ( Y ` I ) ) |
255 |
254
|
breq2d |
|- ( y = I -> ( ( Y ` j ) < ( Y ` y ) <-> ( Y ` j ) < ( Y ` I ) ) ) |
256 |
127 255
|
imbi12d |
|- ( y = I -> ( ( j < y -> ( Y ` j ) < ( Y ` y ) ) <-> ( j < I -> ( Y ` j ) < ( Y ` I ) ) ) ) |
257 |
253 256
|
rspc2v |
|- ( ( j e. ( 1 ... K ) /\ I e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) -> ( j < I -> ( Y ` j ) < ( Y ` I ) ) ) ) |
258 |
248 250 257
|
syl2anc |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( Y ` x ) < ( Y ` y ) ) -> ( j < I -> ( Y ` j ) < ( Y ` I ) ) ) ) |
259 |
247 258
|
mpd |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( j < I -> ( Y ` j ) < ( Y ` I ) ) ) |
260 |
259
|
syldbl2 |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( Y ` j ) < ( Y ` I ) ) |
261 |
171
|
3adantl2 |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) = ( Y ` j ) ) |
262 |
261
|
breq1d |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( ( X ` j ) < ( Y ` I ) <-> ( Y ` j ) < ( Y ` I ) ) ) |
263 |
260 262
|
mpbird |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) < ( Y ` I ) ) |
264 |
245 263
|
ltned |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j < I ) -> ( X ` j ) =/= ( Y ` I ) ) |
265 |
91
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( Y ` I ) e. RR ) |
266 |
265
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( Y ` I ) e. RR ) |
267 |
|
simpl2 |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( Y ` I ) < ( X ` I ) ) |
268 |
266 267
|
ltned |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( Y ` I ) =/= ( X ` I ) ) |
269 |
268
|
necomd |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( X ` I ) =/= ( Y ` I ) ) |
270 |
|
fveq2 |
|- ( j = I -> ( X ` j ) = ( X ` I ) ) |
271 |
270
|
neeq1d |
|- ( j = I -> ( ( X ` j ) =/= ( Y ` I ) <-> ( X ` I ) =/= ( Y ` I ) ) ) |
272 |
271
|
adantl |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( ( X ` j ) =/= ( Y ` I ) <-> ( X ` I ) =/= ( Y ` I ) ) ) |
273 |
269 272
|
mpbird |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ j = I ) -> ( X ` j ) =/= ( Y ` I ) ) |
274 |
265
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` I ) e. RR ) |
275 |
89
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` I ) e. RR ) |
276 |
275
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` I ) e. RR ) |
277 |
244
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` j ) e. RR ) |
278 |
|
simpl2 |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` I ) < ( X ` I ) ) |
279 |
117
|
3ad2ant1 |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) |
280 |
279
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) ) |
281 |
249
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> I e. ( 1 ... K ) ) |
282 |
240
|
adantr |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> j e. ( 1 ... K ) ) |
283 |
|
fveq2 |
|- ( x = I -> ( X ` x ) = ( X ` I ) ) |
284 |
283
|
breq1d |
|- ( x = I -> ( ( X ` x ) < ( X ` y ) <-> ( X ` I ) < ( X ` y ) ) ) |
285 |
195 284
|
imbi12d |
|- ( x = I -> ( ( x < y -> ( X ` x ) < ( X ` y ) ) <-> ( I < y -> ( X ` I ) < ( X ` y ) ) ) ) |
286 |
|
fveq2 |
|- ( y = j -> ( X ` y ) = ( X ` j ) ) |
287 |
286
|
breq2d |
|- ( y = j -> ( ( X ` I ) < ( X ` y ) <-> ( X ` I ) < ( X ` j ) ) ) |
288 |
199 287
|
imbi12d |
|- ( y = j -> ( ( I < y -> ( X ` I ) < ( X ` y ) ) <-> ( I < j -> ( X ` I ) < ( X ` j ) ) ) ) |
289 |
285 288
|
rspc2v |
|- ( ( I e. ( 1 ... K ) /\ j e. ( 1 ... K ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) -> ( I < j -> ( X ` I ) < ( X ` j ) ) ) ) |
290 |
281 282 289
|
syl2anc |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( X ` x ) < ( X ` y ) ) -> ( I < j -> ( X ` I ) < ( X ` j ) ) ) ) |
291 |
280 290
|
mpd |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( I < j -> ( X ` I ) < ( X ` j ) ) ) |
292 |
291
|
syldbl2 |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` I ) < ( X ` j ) ) |
293 |
274 276 277 278 292
|
lttrd |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` I ) < ( X ` j ) ) |
294 |
274 293
|
ltned |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( Y ` I ) =/= ( X ` j ) ) |
295 |
294
|
necomd |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ I < j ) -> ( X ` j ) =/= ( Y ` I ) ) |
296 |
264 273 295
|
3jaodan |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) /\ ( j < I \/ j = I \/ I < j ) ) -> ( X ` j ) =/= ( Y ` I ) ) |
297 |
238 296
|
mpdan |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) /\ j e. ( 1 ... K ) ) -> ( X ` j ) =/= ( Y ` I ) ) |
298 |
297
|
3expa |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) ) /\ j e. ( 1 ... K ) ) -> ( X ` j ) =/= ( Y ` I ) ) |
299 |
298
|
neneqd |
|- ( ( ( ph /\ ( Y ` I ) < ( X ` I ) ) /\ j e. ( 1 ... K ) ) -> -. ( X ` j ) = ( Y ` I ) ) |
300 |
299
|
ralrimiva |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> A. j e. ( 1 ... K ) -. ( X ` j ) = ( Y ` I ) ) |
301 |
|
ralnex |
|- ( A. j e. ( 1 ... K ) -. ( X ` j ) = ( Y ` I ) <-> -. E. j e. ( 1 ... K ) ( X ` j ) = ( Y ` I ) ) |
302 |
301
|
a1i |
|- ( ph -> ( A. j e. ( 1 ... K ) -. ( X ` j ) = ( Y ` I ) <-> -. E. j e. ( 1 ... K ) ( X ` j ) = ( Y ` I ) ) ) |
303 |
|
nnel |
|- ( -. ( Y ` I ) e/ ran X <-> ( Y ` I ) e. ran X ) |
304 |
303
|
a1i |
|- ( ph -> ( -. ( Y ` I ) e/ ran X <-> ( Y ` I ) e. ran X ) ) |
305 |
|
fvelrnb |
|- ( X Fn ( 1 ... K ) -> ( ( Y ` I ) e. ran X <-> E. j e. ( 1 ... K ) ( X ` j ) = ( Y ` I ) ) ) |
306 |
35 305
|
syl |
|- ( ph -> ( ( Y ` I ) e. ran X <-> E. j e. ( 1 ... K ) ( X ` j ) = ( Y ` I ) ) ) |
307 |
304 306
|
bitrd |
|- ( ph -> ( -. ( Y ` I ) e/ ran X <-> E. j e. ( 1 ... K ) ( X ` j ) = ( Y ` I ) ) ) |
308 |
307
|
con1bid |
|- ( ph -> ( -. E. j e. ( 1 ... K ) ( X ` j ) = ( Y ` I ) <-> ( Y ` I ) e/ ran X ) ) |
309 |
302 308
|
bitrd |
|- ( ph -> ( A. j e. ( 1 ... K ) -. ( X ` j ) = ( Y ` I ) <-> ( Y ` I ) e/ ran X ) ) |
310 |
309
|
adantr |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> ( A. j e. ( 1 ... K ) -. ( X ` j ) = ( Y ` I ) <-> ( Y ` I ) e/ ran X ) ) |
311 |
300 310
|
mpbid |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> ( Y ` I ) e/ ran X ) |
312 |
|
elnelne1 |
|- ( ( ( Y ` I ) e. ran Y /\ ( Y ` I ) e/ ran X ) -> ran Y =/= ran X ) |
313 |
312
|
necomd |
|- ( ( ( Y ` I ) e. ran Y /\ ( Y ` I ) e/ ran X ) -> ran X =/= ran Y ) |
314 |
234 311 313
|
syl2anc |
|- ( ( ph /\ ( Y ` I ) < ( X ` I ) ) -> ran X =/= ran Y ) |
315 |
227 314
|
jaodan |
|- ( ( ph /\ ( ( X ` I ) < ( Y ` I ) \/ ( Y ` I ) < ( X ` I ) ) ) -> ran X =/= ran Y ) |
316 |
94 315
|
mpdan |
|- ( ph -> ran X =/= ran Y ) |