Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones3.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones3.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones3.3 |
|- B = { a e. ~P ( 1 ... N ) | ( # ` a ) = K } |
4 |
|
sticksstones3.4 |
|- A = { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
5 |
|
sticksstones3.5 |
|- F = ( z e. A |-> ran z ) |
6 |
1 2 3 4 5
|
sticksstones2 |
|- ( ph -> F : A -1-1-> B ) |
7 |
|
df-f1 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
8 |
7
|
biimpi |
|- ( F : A -1-1-> B -> ( F : A --> B /\ Fun `' F ) ) |
9 |
8
|
simpld |
|- ( F : A -1-1-> B -> F : A --> B ) |
10 |
6 9
|
syl |
|- ( ph -> F : A --> B ) |
11 |
3
|
eleq2i |
|- ( w e. B <-> w e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } ) |
12 |
11
|
biimpi |
|- ( w e. B -> w e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } ) |
13 |
12
|
adantl |
|- ( ( ph /\ w e. B ) -> w e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } ) |
14 |
|
fveqeq2 |
|- ( a = w -> ( ( # ` a ) = K <-> ( # ` w ) = K ) ) |
15 |
14
|
elrab |
|- ( w e. { a e. ~P ( 1 ... N ) | ( # ` a ) = K } <-> ( w e. ~P ( 1 ... N ) /\ ( # ` w ) = K ) ) |
16 |
13 15
|
sylib |
|- ( ( ph /\ w e. B ) -> ( w e. ~P ( 1 ... N ) /\ ( # ` w ) = K ) ) |
17 |
16
|
simpld |
|- ( ( ph /\ w e. B ) -> w e. ~P ( 1 ... N ) ) |
18 |
17
|
elpwid |
|- ( ( ph /\ w e. B ) -> w C_ ( 1 ... N ) ) |
19 |
18
|
sseld |
|- ( ( ph /\ w e. B ) -> ( c e. w -> c e. ( 1 ... N ) ) ) |
20 |
19
|
imp |
|- ( ( ( ph /\ w e. B ) /\ c e. w ) -> c e. ( 1 ... N ) ) |
21 |
20
|
3impa |
|- ( ( ph /\ w e. B /\ c e. w ) -> c e. ( 1 ... N ) ) |
22 |
|
elfznn |
|- ( c e. ( 1 ... N ) -> c e. NN ) |
23 |
21 22
|
syl |
|- ( ( ph /\ w e. B /\ c e. w ) -> c e. NN ) |
24 |
23
|
nnred |
|- ( ( ph /\ w e. B /\ c e. w ) -> c e. RR ) |
25 |
24
|
3expa |
|- ( ( ( ph /\ w e. B ) /\ c e. w ) -> c e. RR ) |
26 |
25
|
ex |
|- ( ( ph /\ w e. B ) -> ( c e. w -> c e. RR ) ) |
27 |
26
|
ssrdv |
|- ( ( ph /\ w e. B ) -> w C_ RR ) |
28 |
|
ltso |
|- < Or RR |
29 |
|
soss |
|- ( w C_ RR -> ( < Or RR -> < Or w ) ) |
30 |
28 29
|
mpi |
|- ( w C_ RR -> < Or w ) |
31 |
27 30
|
syl |
|- ( ( ph /\ w e. B ) -> < Or w ) |
32 |
|
fzfid |
|- ( ( ph /\ w e. B ) -> ( 1 ... N ) e. Fin ) |
33 |
32 18
|
ssfid |
|- ( ( ph /\ w e. B ) -> w e. Fin ) |
34 |
|
fz1iso |
|- ( ( < Or w /\ w e. Fin ) -> E. v v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) |
35 |
31 33 34
|
syl2anc |
|- ( ( ph /\ w e. B ) -> E. v v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) |
36 |
|
df-isom |
|- ( v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) <-> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w /\ A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y <-> ( v ` x ) < ( v ` y ) ) ) ) |
37 |
36
|
biimpi |
|- ( v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) -> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w /\ A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y <-> ( v ` x ) < ( v ` y ) ) ) ) |
38 |
37
|
3ad2ant3 |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w /\ A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y <-> ( v ` x ) < ( v ` y ) ) ) ) |
39 |
38
|
simpld |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v : ( 1 ... ( # ` w ) ) -1-1-onto-> w ) |
40 |
16
|
simprd |
|- ( ( ph /\ w e. B ) -> ( # ` w ) = K ) |
41 |
|
oveq2 |
|- ( ( # ` w ) = K -> ( 1 ... ( # ` w ) ) = ( 1 ... K ) ) |
42 |
41
|
f1oeq2d |
|- ( ( # ` w ) = K -> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w <-> v : ( 1 ... K ) -1-1-onto-> w ) ) |
43 |
40 42
|
syl |
|- ( ( ph /\ w e. B ) -> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w <-> v : ( 1 ... K ) -1-1-onto-> w ) ) |
44 |
43
|
biimpd |
|- ( ( ph /\ w e. B ) -> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w -> v : ( 1 ... K ) -1-1-onto-> w ) ) |
45 |
44
|
3adant3 |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( v : ( 1 ... ( # ` w ) ) -1-1-onto-> w -> v : ( 1 ... K ) -1-1-onto-> w ) ) |
46 |
39 45
|
mpd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v : ( 1 ... K ) -1-1-onto-> w ) |
47 |
|
f1of |
|- ( v : ( 1 ... K ) -1-1-onto-> w -> v : ( 1 ... K ) --> w ) |
48 |
46 47
|
syl |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v : ( 1 ... K ) --> w ) |
49 |
48
|
ffnd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v Fn ( 1 ... K ) ) |
50 |
|
ovexd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( 1 ... K ) e. _V ) |
51 |
49 50
|
fnexd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v e. _V ) |
52 |
18
|
3adant3 |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> w C_ ( 1 ... N ) ) |
53 |
|
fss |
|- ( ( v : ( 1 ... K ) --> w /\ w C_ ( 1 ... N ) ) -> v : ( 1 ... K ) --> ( 1 ... N ) ) |
54 |
48 52 53
|
syl2anc |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v : ( 1 ... K ) --> ( 1 ... N ) ) |
55 |
38
|
simprd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y <-> ( v ` x ) < ( v ` y ) ) ) |
56 |
|
biimp |
|- ( ( x < y <-> ( v ` x ) < ( v ` y ) ) -> ( x < y -> ( v ` x ) < ( v ` y ) ) ) |
57 |
56
|
a1i |
|- ( ( ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) /\ x e. ( 1 ... ( # ` w ) ) ) /\ y e. ( 1 ... ( # ` w ) ) ) -> ( ( x < y <-> ( v ` x ) < ( v ` y ) ) -> ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
58 |
57
|
ralimdva |
|- ( ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) /\ x e. ( 1 ... ( # ` w ) ) ) -> ( A. y e. ( 1 ... ( # ` w ) ) ( x < y <-> ( v ` x ) < ( v ` y ) ) -> A. y e. ( 1 ... ( # ` w ) ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
59 |
58
|
ralimdva |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y <-> ( v ` x ) < ( v ` y ) ) -> A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
60 |
55 59
|
mpd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) |
61 |
40
|
adantr |
|- ( ( ( ph /\ w e. B ) /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( # ` w ) = K ) |
62 |
61
|
3impa |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( # ` w ) = K ) |
63 |
62
|
oveq2d |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( 1 ... ( # ` w ) ) = ( 1 ... K ) ) |
64 |
63
|
raleqdv |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( A. y e. ( 1 ... ( # ` w ) ) ( x < y -> ( v ` x ) < ( v ` y ) ) <-> A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
65 |
64
|
adantr |
|- ( ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) /\ x e. ( 1 ... ( # ` w ) ) ) -> ( A. y e. ( 1 ... ( # ` w ) ) ( x < y -> ( v ` x ) < ( v ` y ) ) <-> A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
66 |
63 65
|
raleqbidva |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( A. x e. ( 1 ... ( # ` w ) ) A. y e. ( 1 ... ( # ` w ) ) ( x < y -> ( v ` x ) < ( v ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
67 |
60 66
|
mpbid |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) |
68 |
54 67
|
jca |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( v : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
69 |
|
feq1 |
|- ( f = v -> ( f : ( 1 ... K ) --> ( 1 ... N ) <-> v : ( 1 ... K ) --> ( 1 ... N ) ) ) |
70 |
|
fveq1 |
|- ( f = v -> ( f ` x ) = ( v ` x ) ) |
71 |
|
fveq1 |
|- ( f = v -> ( f ` y ) = ( v ` y ) ) |
72 |
70 71
|
breq12d |
|- ( f = v -> ( ( f ` x ) < ( f ` y ) <-> ( v ` x ) < ( v ` y ) ) ) |
73 |
72
|
imbi2d |
|- ( f = v -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
74 |
73
|
2ralbidv |
|- ( f = v -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) |
75 |
69 74
|
anbi12d |
|- ( f = v -> ( ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( v : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( v ` x ) < ( v ` y ) ) ) ) ) |
76 |
51 68 75
|
elabd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v e. { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } ) |
77 |
4
|
eleq2i |
|- ( v e. A <-> v e. { f | ( f : ( 1 ... K ) --> ( 1 ... N ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } ) |
78 |
76 77
|
sylibr |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> v e. A ) |
79 |
5
|
a1i |
|- ( ( ph /\ v e. A ) -> F = ( z e. A |-> ran z ) ) |
80 |
|
simpr |
|- ( ( ( ph /\ v e. A ) /\ z = v ) -> z = v ) |
81 |
80
|
rneqd |
|- ( ( ( ph /\ v e. A ) /\ z = v ) -> ran z = ran v ) |
82 |
|
simpr |
|- ( ( ph /\ v e. A ) -> v e. A ) |
83 |
|
rnexg |
|- ( v e. A -> ran v e. _V ) |
84 |
82 83
|
syl |
|- ( ( ph /\ v e. A ) -> ran v e. _V ) |
85 |
79 81 82 84
|
fvmptd |
|- ( ( ph /\ v e. A ) -> ( F ` v ) = ran v ) |
86 |
85
|
ex |
|- ( ph -> ( v e. A -> ( F ` v ) = ran v ) ) |
87 |
86
|
3ad2ant1 |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( v e. A -> ( F ` v ) = ran v ) ) |
88 |
78 87
|
mpd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( F ` v ) = ran v ) |
89 |
|
dff1o2 |
|- ( v : ( 1 ... K ) -1-1-onto-> w <-> ( v Fn ( 1 ... K ) /\ Fun `' v /\ ran v = w ) ) |
90 |
89
|
biimpi |
|- ( v : ( 1 ... K ) -1-1-onto-> w -> ( v Fn ( 1 ... K ) /\ Fun `' v /\ ran v = w ) ) |
91 |
90
|
simp3d |
|- ( v : ( 1 ... K ) -1-1-onto-> w -> ran v = w ) |
92 |
46 91
|
syl |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ran v = w ) |
93 |
88 92
|
eqtrd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( F ` v ) = w ) |
94 |
93
|
eqcomd |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> w = ( F ` v ) ) |
95 |
78 94
|
jca |
|- ( ( ph /\ w e. B /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( v e. A /\ w = ( F ` v ) ) ) |
96 |
95
|
3expa |
|- ( ( ( ph /\ w e. B ) /\ v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) ) -> ( v e. A /\ w = ( F ` v ) ) ) |
97 |
96
|
ex |
|- ( ( ph /\ w e. B ) -> ( v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) -> ( v e. A /\ w = ( F ` v ) ) ) ) |
98 |
97
|
eximdv |
|- ( ( ph /\ w e. B ) -> ( E. v v Isom < , < ( ( 1 ... ( # ` w ) ) , w ) -> E. v ( v e. A /\ w = ( F ` v ) ) ) ) |
99 |
35 98
|
mpd |
|- ( ( ph /\ w e. B ) -> E. v ( v e. A /\ w = ( F ` v ) ) ) |
100 |
|
df-rex |
|- ( E. v e. A w = ( F ` v ) <-> E. v ( v e. A /\ w = ( F ` v ) ) ) |
101 |
99 100
|
sylibr |
|- ( ( ph /\ w e. B ) -> E. v e. A w = ( F ` v ) ) |
102 |
101
|
ralrimiva |
|- ( ph -> A. w e. B E. v e. A w = ( F ` v ) ) |
103 |
10 102
|
jca |
|- ( ph -> ( F : A --> B /\ A. w e. B E. v e. A w = ( F ` v ) ) ) |
104 |
|
dffo3 |
|- ( F : A -onto-> B <-> ( F : A --> B /\ A. w e. B E. v e. A w = ( F ` v ) ) ) |
105 |
104
|
a1i |
|- ( ph -> ( F : A -onto-> B <-> ( F : A --> B /\ A. w e. B E. v e. A w = ( F ` v ) ) ) ) |
106 |
103 105
|
mpbird |
|- ( ph -> F : A -onto-> B ) |