Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones3.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones3.3 |
⊢ 𝐵 = { 𝑎 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑎 ) = 𝐾 } |
4 |
|
sticksstones3.4 |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
5 |
|
sticksstones3.5 |
⊢ 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ran 𝑧 ) |
6 |
1 2 3 4 5
|
sticksstones2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
7 |
|
df-f1 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) |
8 |
7
|
biimpi |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) |
9 |
8
|
simpld |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
11 |
3
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ { 𝑎 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑎 ) = 𝐾 } ) |
12 |
11
|
biimpi |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ { 𝑎 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑎 ) = 𝐾 } ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ { 𝑎 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑎 ) = 𝐾 } ) |
14 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑤 → ( ( ♯ ‘ 𝑎 ) = 𝐾 ↔ ( ♯ ‘ 𝑤 ) = 𝐾 ) ) |
15 |
14
|
elrab |
⊢ ( 𝑤 ∈ { 𝑎 ∈ 𝒫 ( 1 ... 𝑁 ) ∣ ( ♯ ‘ 𝑎 ) = 𝐾 } ↔ ( 𝑤 ∈ 𝒫 ( 1 ... 𝑁 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐾 ) ) |
16 |
13 15
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 ∈ 𝒫 ( 1 ... 𝑁 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐾 ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝒫 ( 1 ... 𝑁 ) ) |
18 |
17
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ⊆ ( 1 ... 𝑁 ) ) |
19 |
18
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑐 ∈ 𝑤 → 𝑐 ∈ ( 1 ... 𝑁 ) ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑤 ) → 𝑐 ∈ ( 1 ... 𝑁 ) ) |
21 |
20
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑐 ∈ 𝑤 ) → 𝑐 ∈ ( 1 ... 𝑁 ) ) |
22 |
|
elfznn |
⊢ ( 𝑐 ∈ ( 1 ... 𝑁 ) → 𝑐 ∈ ℕ ) |
23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑐 ∈ 𝑤 ) → 𝑐 ∈ ℕ ) |
24 |
23
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑐 ∈ 𝑤 ) → 𝑐 ∈ ℝ ) |
25 |
24
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝑤 ) → 𝑐 ∈ ℝ ) |
26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑐 ∈ 𝑤 → 𝑐 ∈ ℝ ) ) |
27 |
26
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ⊆ ℝ ) |
28 |
|
ltso |
⊢ < Or ℝ |
29 |
|
soss |
⊢ ( 𝑤 ⊆ ℝ → ( < Or ℝ → < Or 𝑤 ) ) |
30 |
28 29
|
mpi |
⊢ ( 𝑤 ⊆ ℝ → < Or 𝑤 ) |
31 |
27 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → < Or 𝑤 ) |
32 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 1 ... 𝑁 ) ∈ Fin ) |
33 |
32 18
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ Fin ) |
34 |
|
fz1iso |
⊢ ( ( < Or 𝑤 ∧ 𝑤 ∈ Fin ) → ∃ 𝑣 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) |
35 |
31 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑣 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) |
36 |
|
df-isom |
⊢ ( 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ↔ ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 ∧ ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
37 |
36
|
biimpi |
⊢ ( 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) → ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 ∧ ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 ∧ ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
39 |
38
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 ) |
40 |
16
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( ♯ ‘ 𝑤 ) = 𝐾 ) |
41 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑤 ) = 𝐾 → ( 1 ... ( ♯ ‘ 𝑤 ) ) = ( 1 ... 𝐾 ) ) |
42 |
41
|
f1oeq2d |
⊢ ( ( ♯ ‘ 𝑤 ) = 𝐾 → ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 ↔ 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 ) ) |
43 |
40 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 ↔ 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 ) ) |
44 |
43
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 → 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 ) ) |
45 |
44
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝑣 : ( 1 ... ( ♯ ‘ 𝑤 ) ) –1-1-onto→ 𝑤 → 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 ) ) |
46 |
39 45
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 ) |
47 |
|
f1of |
⊢ ( 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 → 𝑣 : ( 1 ... 𝐾 ) ⟶ 𝑤 ) |
48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 : ( 1 ... 𝐾 ) ⟶ 𝑤 ) |
49 |
48
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 Fn ( 1 ... 𝐾 ) ) |
50 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 1 ... 𝐾 ) ∈ V ) |
51 |
49 50
|
fnexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 ∈ V ) |
52 |
18
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑤 ⊆ ( 1 ... 𝑁 ) ) |
53 |
|
fss |
⊢ ( ( 𝑣 : ( 1 ... 𝐾 ) ⟶ 𝑤 ∧ 𝑤 ⊆ ( 1 ... 𝑁 ) ) → 𝑣 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ) |
54 |
48 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ) |
55 |
38
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) |
56 |
|
biimp |
⊢ ( ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) → ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) |
57 |
56
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ∧ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ) → ( ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) → ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
58 |
57
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
59 |
58
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
60 |
55 59
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) |
61 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( ♯ ‘ 𝑤 ) = 𝐾 ) |
62 |
61
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( ♯ ‘ 𝑤 ) = 𝐾 ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 1 ... ( ♯ ‘ 𝑤 ) ) = ( 1 ... 𝐾 ) ) |
64 |
63
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ) → ( ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
66 |
63 65
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( ∀ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ∀ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑤 ) ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
67 |
60 66
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) |
68 |
54 67
|
jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝑣 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
69 |
|
feq1 |
⊢ ( 𝑓 = 𝑣 → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ↔ 𝑣 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ) ) |
70 |
|
fveq1 |
⊢ ( 𝑓 = 𝑣 → ( 𝑓 ‘ 𝑥 ) = ( 𝑣 ‘ 𝑥 ) ) |
71 |
|
fveq1 |
⊢ ( 𝑓 = 𝑣 → ( 𝑓 ‘ 𝑦 ) = ( 𝑣 ‘ 𝑦 ) ) |
72 |
70 71
|
breq12d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) |
73 |
72
|
imbi2d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
74 |
73
|
2ralbidv |
⊢ ( 𝑓 = 𝑣 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) |
75 |
69 74
|
anbi12d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑣 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑣 ‘ 𝑥 ) < ( 𝑣 ‘ 𝑦 ) ) ) ) ) |
76 |
51 68 75
|
elabd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
77 |
4
|
eleq2i |
⊢ ( 𝑣 ∈ 𝐴 ↔ 𝑣 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
78 |
76 77
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑣 ∈ 𝐴 ) |
79 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ran 𝑧 ) ) |
80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑧 = 𝑣 ) → 𝑧 = 𝑣 ) |
81 |
80
|
rneqd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑧 = 𝑣 ) → ran 𝑧 = ran 𝑣 ) |
82 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ 𝐴 ) |
83 |
|
rnexg |
⊢ ( 𝑣 ∈ 𝐴 → ran 𝑣 ∈ V ) |
84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ran 𝑣 ∈ V ) |
85 |
79 81 82 84
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) = ran 𝑣 ) |
86 |
85
|
ex |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐴 → ( 𝐹 ‘ 𝑣 ) = ran 𝑣 ) ) |
87 |
86
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝑣 ∈ 𝐴 → ( 𝐹 ‘ 𝑣 ) = ran 𝑣 ) ) |
88 |
78 87
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝐹 ‘ 𝑣 ) = ran 𝑣 ) |
89 |
|
dff1o2 |
⊢ ( 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 ↔ ( 𝑣 Fn ( 1 ... 𝐾 ) ∧ Fun ◡ 𝑣 ∧ ran 𝑣 = 𝑤 ) ) |
90 |
89
|
biimpi |
⊢ ( 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 → ( 𝑣 Fn ( 1 ... 𝐾 ) ∧ Fun ◡ 𝑣 ∧ ran 𝑣 = 𝑤 ) ) |
91 |
90
|
simp3d |
⊢ ( 𝑣 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑤 → ran 𝑣 = 𝑤 ) |
92 |
46 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ran 𝑣 = 𝑤 ) |
93 |
88 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝐹 ‘ 𝑣 ) = 𝑤 ) |
94 |
93
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → 𝑤 = ( 𝐹 ‘ 𝑣 ) ) |
95 |
78 94
|
jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) |
96 |
95
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) ) → ( 𝑣 ∈ 𝐴 ∧ 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) |
97 |
96
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) → ( 𝑣 ∈ 𝐴 ∧ 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) ) |
98 |
97
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( ∃ 𝑣 𝑣 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑤 ) ) , 𝑤 ) → ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) ) |
99 |
35 98
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) |
100 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝐴 𝑤 = ( 𝐹 ‘ 𝑣 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝐴 ∧ 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) |
101 |
99 100
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑣 ∈ 𝐴 𝑤 = ( 𝐹 ‘ 𝑣 ) ) |
102 |
101
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∃ 𝑣 ∈ 𝐴 𝑤 = ( 𝐹 ‘ 𝑣 ) ) |
103 |
10 102
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ∃ 𝑣 ∈ 𝐴 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) |
104 |
|
dffo3 |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ∃ 𝑣 ∈ 𝐴 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) |
105 |
104
|
a1i |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐵 ∃ 𝑣 ∈ 𝐴 𝑤 = ( 𝐹 ‘ 𝑣 ) ) ) ) |
106 |
103 105
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |