Metamath Proof Explorer


Theorem sticksstones4

Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024)

Ref Expression
Hypotheses sticksstones4.1 φN0
sticksstones4.2 φK0
sticksstones4.3 B=a𝒫1N|a=K
sticksstones4.4 A=f|f:1K1Nx1Ky1Kx<yfx<fy
Assertion sticksstones4 φAB

Proof

Step Hyp Ref Expression
1 sticksstones4.1 φN0
2 sticksstones4.2 φK0
3 sticksstones4.3 B=a𝒫1N|a=K
4 sticksstones4.4 A=f|f:1K1Nx1Ky1Kx<yfx<fy
5 eqid pAranp=pAranp
6 1 2 3 4 5 sticksstones2 φpAranp:A1-1B
7 1 2 3 4 5 sticksstones3 φpAranp:AontoB
8 6 7 jca φpAranp:A1-1BpAranp:AontoB
9 df-f1o pAranp:A1-1 ontoBpAranp:A1-1BpAranp:AontoB
10 8 9 sylibr φpAranp:A1-1 ontoB
11 simpl f:1K1Nx1Ky1Kx<yfx<fyf:1K1N
12 11 a1i φf:1K1Nx1Ky1Kx<yfx<fyf:1K1N
13 12 ss2abdv φf|f:1K1Nx1Ky1Kx<yfx<fyf|f:1K1N
14 fzfid φ1KFin
15 fzfid φ1NFin
16 mapex 1KFin1NFinf|f:1K1NV
17 14 15 16 syl2anc φf|f:1K1NV
18 ssexg f|f:1K1Nx1Ky1Kx<yfx<fyf|f:1K1Nf|f:1K1NVf|f:1K1Nx1Ky1Kx<yfx<fyV
19 13 17 18 syl2anc φf|f:1K1Nx1Ky1Kx<yfx<fyV
20 4 eleq1i AVf|f:1K1Nx1Ky1Kx<yfx<fyV
21 19 20 sylibr φAV
22 21 mptexd φpAranpV
23 f1oeq1 g=pAranpg:A1-1 ontoBpAranp:A1-1 ontoB
24 23 biimprd g=pAranppAranp:A1-1 ontoBg:A1-1 ontoB
25 24 adantl φg=pAranppAranp:A1-1 ontoBg:A1-1 ontoB
26 22 25 spcimedv φpAranp:A1-1 ontoBgg:A1-1 ontoB
27 10 26 mpd φgg:A1-1 ontoB
28 bren ABgg:A1-1 ontoB
29 27 28 sylibr φAB