| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sub1cncf.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 − 𝐴 ) ) |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 3 |
2
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
| 6 |
5
|
idcncf |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
| 7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 8 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 9 |
|
cncfmptc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 10 |
8 8 9
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 |
2 4 7 10
|
cncfmpt2f |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 − 𝐴 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 12 |
1 11
|
eqeltrid |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |