Metamath Proof Explorer


Theorem sub1cncf

Description: Subtracting a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis sub1cncf.1 F=xxA
Assertion sub1cncf AF:cn

Proof

Step Hyp Ref Expression
1 sub1cncf.1 F=xxA
2 eqid TopOpenfld=TopOpenfld
3 2 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
4 3 a1i ATopOpenfld×tTopOpenfldCnTopOpenfld
5 eqid xx=xx
6 5 idcncf xx:cn
7 6 a1i Axx:cn
8 ssid
9 cncfmptc AxA:cn
10 8 8 9 mp3an23 AxA:cn
11 2 4 7 10 cncfmpt2f AxxA:cn
12 1 11 eqeltrid AF:cn