| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐶  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							subcl | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  −  𝐶 )  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  −  𝐶 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							subadd2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  ( 𝐵  −  𝐶 )  ∈  ℂ )  →  ( ( 𝐴  −  𝐶 )  =  ( 𝐵  −  𝐶 )  ↔  ( ( 𝐵  −  𝐶 )  +  𝐶 )  =  𝐴 ) )  | 
						
						
							| 6 | 
							
								1 2 4 5
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  −  𝐶 )  =  ( 𝐵  −  𝐶 )  ↔  ( ( 𝐵  −  𝐶 )  +  𝐶 )  =  𝐴 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							npcan | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐵  −  𝐶 )  +  𝐶 )  =  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐵  −  𝐶 )  +  𝐶 )  =  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							eqeq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐵  −  𝐶 )  +  𝐶 )  =  𝐴  ↔  𝐵  =  𝐴 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bitrdi | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐵  −  𝐶 )  +  𝐶 )  =  𝐴  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							bitrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  −  𝐶 )  =  ( 𝐵  −  𝐶 )  ↔  𝐴  =  𝐵 ) )  |