Step |
Hyp |
Ref |
Expression |
1 |
|
iwrdsplit.s |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
2 |
|
iwrdsplit.f |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝑆 ) |
3 |
|
iwrdsplit.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ0 ) |
5 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑁 ) ⊆ ℕ0 |
6 |
|
fnssres |
⊢ ( ( 𝐹 Fn ℕ0 ∧ ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) |
7 |
4 5 6
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) |
8 |
|
hashfn |
⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
10 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = 𝑁 ) |