| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iwrdsplit.s |
|- ( ph -> S e. _V ) |
| 2 |
|
iwrdsplit.f |
|- ( ph -> F : NN0 --> S ) |
| 3 |
|
iwrdsplit.n |
|- ( ph -> N e. NN0 ) |
| 4 |
2
|
ffnd |
|- ( ph -> F Fn NN0 ) |
| 5 |
|
fzo0ssnn0 |
|- ( 0 ..^ N ) C_ NN0 |
| 6 |
|
fnssres |
|- ( ( F Fn NN0 /\ ( 0 ..^ N ) C_ NN0 ) -> ( F |` ( 0 ..^ N ) ) Fn ( 0 ..^ N ) ) |
| 7 |
4 5 6
|
sylancl |
|- ( ph -> ( F |` ( 0 ..^ N ) ) Fn ( 0 ..^ N ) ) |
| 8 |
|
hashfn |
|- ( ( F |` ( 0 ..^ N ) ) Fn ( 0 ..^ N ) -> ( # ` ( F |` ( 0 ..^ N ) ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( # ` ( F |` ( 0 ..^ N ) ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 10 |
|
hashfzo0 |
|- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( # ` ( 0 ..^ N ) ) = N ) |
| 12 |
9 11
|
eqtrd |
|- ( ph -> ( # ` ( F |` ( 0 ..^ N ) ) ) = N ) |