Step |
Hyp |
Ref |
Expression |
1 |
|
iwrdsplit.s |
|- ( ph -> S e. _V ) |
2 |
|
iwrdsplit.f |
|- ( ph -> F : NN0 --> S ) |
3 |
|
iwrdsplit.n |
|- ( ph -> N e. NN0 ) |
4 |
|
1nn0 |
|- 1 e. NN0 |
5 |
4
|
a1i |
|- ( ph -> 1 e. NN0 ) |
6 |
3 5
|
nn0addcld |
|- ( ph -> ( N + 1 ) e. NN0 ) |
7 |
1 2 6
|
subiwrd |
|- ( ph -> ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S ) |
8 |
|
1re |
|- 1 e. RR |
9 |
|
nn0addge2 |
|- ( ( 1 e. RR /\ N e. NN0 ) -> 1 <_ ( N + 1 ) ) |
10 |
8 3 9
|
sylancr |
|- ( ph -> 1 <_ ( N + 1 ) ) |
11 |
1 2 6
|
subiwrdlen |
|- ( ph -> ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( N + 1 ) ) |
12 |
10 11
|
breqtrrd |
|- ( ph -> 1 <_ ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) |
13 |
|
wrdlenge1n0 |
|- ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) <-> 1 <_ ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) |
14 |
7 13
|
syl |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) <-> 1 <_ ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) |
15 |
12 14
|
mpbird |
|- ( ph -> ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) ) |
16 |
|
pfxlswccat |
|- ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S /\ ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) ) -> ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ++ <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> ) = ( F |` ( 0 ..^ ( N + 1 ) ) ) ) |
17 |
7 15 16
|
syl2anc |
|- ( ph -> ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ++ <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> ) = ( F |` ( 0 ..^ ( N + 1 ) ) ) ) |
18 |
3
|
nn0cnd |
|- ( ph -> N e. CC ) |
19 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
20 |
18 19 11
|
mvrraddd |
|- ( ph -> ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) = N ) |
21 |
20
|
oveq2d |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix N ) ) |
22 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
23 |
3 22
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
24 |
|
elfz0add |
|- ( ( N e. NN0 /\ 1 e. NN0 ) -> ( N e. ( 0 ... N ) -> N e. ( 0 ... ( N + 1 ) ) ) ) |
25 |
24
|
imp |
|- ( ( ( N e. NN0 /\ 1 e. NN0 ) /\ N e. ( 0 ... N ) ) -> N e. ( 0 ... ( N + 1 ) ) ) |
26 |
3 5 23 25
|
syl21anc |
|- ( ph -> N e. ( 0 ... ( N + 1 ) ) ) |
27 |
11
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) = ( 0 ... ( N + 1 ) ) ) |
28 |
26 27
|
eleqtrrd |
|- ( ph -> N e. ( 0 ... ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) |
29 |
|
pfxres |
|- ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S /\ N e. ( 0 ... ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix N ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) ) |
30 |
7 28 29
|
syl2anc |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix N ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) ) |
31 |
|
fzossfzop1 |
|- ( N e. NN0 -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |
32 |
|
resabs1 |
|- ( ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) = ( F |` ( 0 ..^ N ) ) ) |
33 |
3 31 32
|
3syl |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) = ( F |` ( 0 ..^ N ) ) ) |
34 |
21 30 33
|
3eqtrd |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) = ( F |` ( 0 ..^ N ) ) ) |
35 |
|
lsw |
|- ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S -> ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ) |
36 |
7 35
|
syl |
|- ( ph -> ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ) |
37 |
20
|
fveq2d |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` N ) ) |
38 |
|
fzonn0p1 |
|- ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) ) |
39 |
|
fvres |
|- ( N e. ( 0 ..^ ( N + 1 ) ) -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` N ) = ( F ` N ) ) |
40 |
3 38 39
|
3syl |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` N ) = ( F ` N ) ) |
41 |
36 37 40
|
3eqtrd |
|- ( ph -> ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( F ` N ) ) |
42 |
41
|
s1eqd |
|- ( ph -> <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> = <" ( F ` N ) "> ) |
43 |
34 42
|
oveq12d |
|- ( ph -> ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ++ <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> ) = ( ( F |` ( 0 ..^ N ) ) ++ <" ( F ` N ) "> ) ) |
44 |
17 43
|
eqtr3d |
|- ( ph -> ( F |` ( 0 ..^ ( N + 1 ) ) ) = ( ( F |` ( 0 ..^ N ) ) ++ <" ( F ` N ) "> ) ) |