| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iwrdsplit.s |
|- ( ph -> S e. _V ) |
| 2 |
|
iwrdsplit.f |
|- ( ph -> F : NN0 --> S ) |
| 3 |
|
iwrdsplit.n |
|- ( ph -> N e. NN0 ) |
| 4 |
|
1nn0 |
|- 1 e. NN0 |
| 5 |
4
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 6 |
3 5
|
nn0addcld |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 7 |
1 2 6
|
subiwrd |
|- ( ph -> ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S ) |
| 8 |
|
1re |
|- 1 e. RR |
| 9 |
|
nn0addge2 |
|- ( ( 1 e. RR /\ N e. NN0 ) -> 1 <_ ( N + 1 ) ) |
| 10 |
8 3 9
|
sylancr |
|- ( ph -> 1 <_ ( N + 1 ) ) |
| 11 |
1 2 6
|
subiwrdlen |
|- ( ph -> ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( N + 1 ) ) |
| 12 |
10 11
|
breqtrrd |
|- ( ph -> 1 <_ ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) |
| 13 |
|
wrdlenge1n0 |
|- ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) <-> 1 <_ ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) |
| 14 |
7 13
|
syl |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) <-> 1 <_ ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) |
| 15 |
12 14
|
mpbird |
|- ( ph -> ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) ) |
| 16 |
|
pfxlswccat |
|- ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S /\ ( F |` ( 0 ..^ ( N + 1 ) ) ) =/= (/) ) -> ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ++ <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> ) = ( F |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 17 |
7 15 16
|
syl2anc |
|- ( ph -> ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ++ <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> ) = ( F |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 18 |
3
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 19 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 20 |
18 19 11
|
mvrraddd |
|- ( ph -> ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) = N ) |
| 21 |
20
|
oveq2d |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix N ) ) |
| 22 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 23 |
3 22
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 24 |
|
elfz0add |
|- ( ( N e. NN0 /\ 1 e. NN0 ) -> ( N e. ( 0 ... N ) -> N e. ( 0 ... ( N + 1 ) ) ) ) |
| 25 |
24
|
imp |
|- ( ( ( N e. NN0 /\ 1 e. NN0 ) /\ N e. ( 0 ... N ) ) -> N e. ( 0 ... ( N + 1 ) ) ) |
| 26 |
3 5 23 25
|
syl21anc |
|- ( ph -> N e. ( 0 ... ( N + 1 ) ) ) |
| 27 |
11
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) = ( 0 ... ( N + 1 ) ) ) |
| 28 |
26 27
|
eleqtrrd |
|- ( ph -> N e. ( 0 ... ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) |
| 29 |
|
pfxres |
|- ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S /\ N e. ( 0 ... ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) ) ) -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix N ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) ) |
| 30 |
7 28 29
|
syl2anc |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix N ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) ) |
| 31 |
|
fzossfzop1 |
|- ( N e. NN0 -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |
| 32 |
|
resabs1 |
|- ( ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) = ( F |` ( 0 ..^ N ) ) ) |
| 33 |
3 31 32
|
3syl |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) |` ( 0 ..^ N ) ) = ( F |` ( 0 ..^ N ) ) ) |
| 34 |
21 30 33
|
3eqtrd |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) = ( F |` ( 0 ..^ N ) ) ) |
| 35 |
|
lsw |
|- ( ( F |` ( 0 ..^ ( N + 1 ) ) ) e. Word S -> ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ) |
| 36 |
7 35
|
syl |
|- ( ph -> ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ) |
| 37 |
20
|
fveq2d |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) = ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` N ) ) |
| 38 |
|
fzonn0p1 |
|- ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 39 |
|
fvres |
|- ( N e. ( 0 ..^ ( N + 1 ) ) -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` N ) = ( F ` N ) ) |
| 40 |
3 38 39
|
3syl |
|- ( ph -> ( ( F |` ( 0 ..^ ( N + 1 ) ) ) ` N ) = ( F ` N ) ) |
| 41 |
36 37 40
|
3eqtrd |
|- ( ph -> ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) = ( F ` N ) ) |
| 42 |
41
|
s1eqd |
|- ( ph -> <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> = <" ( F ` N ) "> ) |
| 43 |
34 42
|
oveq12d |
|- ( ph -> ( ( ( F |` ( 0 ..^ ( N + 1 ) ) ) prefix ( ( # ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) - 1 ) ) ++ <" ( lastS ` ( F |` ( 0 ..^ ( N + 1 ) ) ) ) "> ) = ( ( F |` ( 0 ..^ N ) ) ++ <" ( F ` N ) "> ) ) |
| 44 |
17 43
|
eqtr3d |
|- ( ph -> ( F |` ( 0 ..^ ( N + 1 ) ) ) = ( ( F |` ( 0 ..^ N ) ) ++ <" ( F ` N ) "> ) ) |