Step |
Hyp |
Ref |
Expression |
1 |
|
iwrdsplit.s |
|
2 |
|
iwrdsplit.f |
|
3 |
|
iwrdsplit.n |
|
4 |
|
1nn0 |
|
5 |
4
|
a1i |
|
6 |
3 5
|
nn0addcld |
|
7 |
1 2 6
|
subiwrd |
|
8 |
|
1re |
|
9 |
|
nn0addge2 |
|
10 |
8 3 9
|
sylancr |
|
11 |
1 2 6
|
subiwrdlen |
|
12 |
10 11
|
breqtrrd |
|
13 |
|
wrdlenge1n0 |
|
14 |
7 13
|
syl |
|
15 |
12 14
|
mpbird |
|
16 |
|
pfxlswccat |
|
17 |
7 15 16
|
syl2anc |
|
18 |
3
|
nn0cnd |
|
19 |
|
1cnd |
|
20 |
18 19 11
|
mvrraddd |
|
21 |
20
|
oveq2d |
|
22 |
|
nn0fz0 |
|
23 |
3 22
|
sylib |
|
24 |
|
elfz0add |
|
25 |
24
|
imp |
|
26 |
3 5 23 25
|
syl21anc |
|
27 |
11
|
oveq2d |
|
28 |
26 27
|
eleqtrrd |
|
29 |
|
pfxres |
|
30 |
7 28 29
|
syl2anc |
|
31 |
|
fzossfzop1 |
|
32 |
|
resabs1 |
|
33 |
3 31 32
|
3syl |
|
34 |
21 30 33
|
3eqtrd |
|
35 |
|
lsw |
|
36 |
7 35
|
syl |
|
37 |
20
|
fveq2d |
|
38 |
|
fzonn0p1 |
|
39 |
|
fvres |
|
40 |
3 38 39
|
3syl |
|
41 |
36 37 40
|
3eqtrd |
|
42 |
41
|
s1eqd |
|
43 |
34 42
|
oveq12d |
|
44 |
17 43
|
eqtr3d |
|