Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
|
2 |
|
sseqval.2 |
|
3 |
|
sseqval.3 |
|
4 |
|
sseqval.4 |
|
5 |
|
sseqfv2.4 |
|
6 |
1 2 3 4 5
|
sseqfv2 |
|
7 |
|
fveq2 |
|
8 |
|
oveq2 |
|
9 |
8
|
reseq2d |
|
10 |
9
|
fveq2d |
|
11 |
10
|
s1eqd |
|
12 |
9 11
|
oveq12d |
|
13 |
7 12
|
eqeq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
fveq2 |
|
16 |
|
oveq2 |
|
17 |
16
|
reseq2d |
|
18 |
17
|
fveq2d |
|
19 |
18
|
s1eqd |
|
20 |
17 19
|
oveq12d |
|
21 |
15 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
fveq2 |
|
24 |
|
oveq2 |
|
25 |
24
|
reseq2d |
|
26 |
25
|
fveq2d |
|
27 |
26
|
s1eqd |
|
28 |
25 27
|
oveq12d |
|
29 |
23 28
|
eqeq12d |
|
30 |
29
|
imbi2d |
|
31 |
|
fveq2 |
|
32 |
|
oveq2 |
|
33 |
32
|
reseq2d |
|
34 |
33
|
fveq2d |
|
35 |
34
|
s1eqd |
|
36 |
33 35
|
oveq12d |
|
37 |
31 36
|
eqeq12d |
|
38 |
37
|
imbi2d |
|
39 |
|
ovex |
|
40 |
|
lencl |
|
41 |
2 40
|
syl |
|
42 |
|
fvconst2g |
|
43 |
39 41 42
|
sylancr |
|
44 |
40
|
nn0zd |
|
45 |
|
seq1 |
|
46 |
2 44 45
|
3syl |
|
47 |
1 2 3 4
|
sseqfres |
|
48 |
47
|
fveq2d |
|
49 |
48
|
s1eqd |
|
50 |
47 49
|
oveq12d |
|
51 |
43 46 50
|
3eqtr4d |
|
52 |
51
|
a1i |
|
53 |
|
seqp1 |
|
54 |
53
|
adantl |
|
55 |
|
id |
|
56 |
|
fveq2 |
|
57 |
56
|
s1eqd |
|
58 |
55 57
|
oveq12d |
|
59 |
|
eqidd |
|
60 |
58 59
|
cbvmpov |
|
61 |
60
|
a1i |
|
62 |
|
simprl |
|
63 |
62
|
fveq2d |
|
64 |
63
|
s1eqd |
|
65 |
62 64
|
oveq12d |
|
66 |
|
fvexd |
|
67 |
|
fvexd |
|
68 |
|
ovex |
|
69 |
68
|
a1i |
|
70 |
61 65 66 67 69
|
ovmpod |
|
71 |
54 70
|
eqtrd |
|
72 |
71
|
adantr |
|
73 |
1
|
adantr |
|
74 |
2
|
adantr |
|
75 |
4
|
adantr |
|
76 |
|
simpr |
|
77 |
73 74 3 75 76
|
sseqfv2 |
|
78 |
77
|
adantr |
|
79 |
|
simpr |
|
80 |
79
|
fveq2d |
|
81 |
1 2 3 4
|
sseqf |
|
82 |
|
fzo0ssnn0 |
|
83 |
|
fssres |
|
84 |
81 82 83
|
sylancl |
|
85 |
|
iswrdi |
|
86 |
84 85
|
syl |
|
87 |
86
|
adantr |
|
88 |
|
elex |
|
89 |
87 88
|
syl |
|
90 |
81
|
adantr |
|
91 |
|
eluznn0 |
|
92 |
41 91
|
sylan |
|
93 |
73 90 92
|
subiwrdlen |
|
94 |
93 76
|
eqeltrd |
|
95 |
|
hashf |
|
96 |
|
ffn |
|
97 |
|
elpreima |
|
98 |
95 96 97
|
mp2b |
|
99 |
89 94 98
|
sylanbrc |
|
100 |
87 99
|
elind |
|
101 |
100 3
|
eleqtrrdi |
|
102 |
75 101
|
ffvelrnd |
|
103 |
|
lswccats1 |
|
104 |
87 102 103
|
syl2anc |
|
105 |
104
|
adantr |
|
106 |
78 80 105
|
3eqtrrd |
|
107 |
106
|
s1eqd |
|
108 |
107
|
oveq2d |
|
109 |
73 90 92
|
iwrdsplit |
|
110 |
109
|
adantr |
|
111 |
108 79 110
|
3eqtr4d |
|
112 |
111
|
fveq2d |
|
113 |
112
|
s1eqd |
|
114 |
111 113
|
oveq12d |
|
115 |
72 114
|
eqtrd |
|
116 |
115
|
ex |
|
117 |
116
|
expcom |
|
118 |
117
|
a2d |
|
119 |
14 22 30 38 52 118
|
uzind4 |
|
120 |
5 119
|
mpcom |
|
121 |
120
|
fveq2d |
|
122 |
|
fzo0ssnn0 |
|
123 |
|
fssres |
|
124 |
81 122 123
|
sylancl |
|
125 |
|
iswrdi |
|
126 |
124 125
|
syl |
|
127 |
|
elex |
|
128 |
126 127
|
syl |
|
129 |
|
eluznn0 |
|
130 |
41 5 129
|
syl2anc |
|
131 |
1 81 130
|
subiwrdlen |
|
132 |
131 5
|
eqeltrd |
|
133 |
|
elpreima |
|
134 |
95 96 133
|
mp2b |
|
135 |
128 132 134
|
sylanbrc |
|
136 |
126 135
|
elind |
|
137 |
136 3
|
eleqtrrdi |
|
138 |
4 137
|
ffvelrnd |
|
139 |
|
lswccats1 |
|
140 |
126 138 139
|
syl2anc |
|
141 |
6 121 140
|
3eqtrd |
|