Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
|
2 |
|
sseqval.2 |
|
3 |
|
sseqval.3 |
|
4 |
|
sseqval.4 |
|
5 |
|
wrdf |
|
6 |
2 5
|
syl |
|
7 |
|
vex |
|
8 |
7
|
a1i |
|
9 |
|
fvex |
|
10 |
|
df-lsw |
|
11 |
9 10
|
dmmpti |
|
12 |
8 11
|
eleqtrrdi |
|
13 |
|
eldifsn |
|
14 |
|
inss1 |
|
15 |
3 14
|
eqsstri |
|
16 |
15
|
sseli |
|
17 |
|
lswcl |
|
18 |
16 17
|
sylan |
|
19 |
13 18
|
sylbi |
|
20 |
19
|
adantl |
|
21 |
12 20
|
jca |
|
22 |
21
|
ralrimiva |
|
23 |
9 10
|
fnmpti |
|
24 |
|
fnfun |
|
25 |
|
ffvresb |
|
26 |
23 24 25
|
mp2b |
|
27 |
22 26
|
sylibr |
|
28 |
|
eqid |
|
29 |
|
lencl |
|
30 |
29
|
nn0zd |
|
31 |
2 30
|
syl |
|
32 |
|
ovex |
|
33 |
|
simpr |
|
34 |
2 29
|
syl |
|
35 |
34
|
adantr |
|
36 |
|
elnn0uz |
|
37 |
35 36
|
sylib |
|
38 |
|
uztrn |
|
39 |
33 37 38
|
syl2anc |
|
40 |
|
nn0uz |
|
41 |
39 40
|
eleqtrrdi |
|
42 |
|
fvconst2g |
|
43 |
32 41 42
|
sylancr |
|
44 |
1 2 3 4
|
sseqmw |
|
45 |
4 44
|
ffvelrnd |
|
46 |
45
|
s1cld |
|
47 |
|
ccatcl |
|
48 |
2 46 47
|
syl2anc |
|
49 |
32
|
a1i |
|
50 |
|
ccatws1len |
|
51 |
2 50
|
syl |
|
52 |
|
uzid |
|
53 |
|
peano2uz |
|
54 |
31 52 53
|
3syl |
|
55 |
51 54
|
eqeltrd |
|
56 |
|
hashf |
|
57 |
|
ffn |
|
58 |
|
elpreima |
|
59 |
56 57 58
|
mp2b |
|
60 |
49 55 59
|
sylanbrc |
|
61 |
48 60
|
elind |
|
62 |
61 3
|
eleqtrrdi |
|
63 |
62
|
adantr |
|
64 |
|
ccatws1n0 |
|
65 |
2 64
|
syl |
|
66 |
65
|
adantr |
|
67 |
|
eldifsn |
|
68 |
63 66 67
|
sylanbrc |
|
69 |
43 68
|
eqeltrd |
|
70 |
|
eqidd |
|
71 |
|
simprl |
|
72 |
71
|
fveq2d |
|
73 |
72
|
s1eqd |
|
74 |
71 73
|
oveq12d |
|
75 |
|
vex |
|
76 |
75
|
a1i |
|
77 |
|
vex |
|
78 |
77
|
a1i |
|
79 |
|
ovex |
|
80 |
79
|
a1i |
|
81 |
70 74 76 78 80
|
ovmpod |
|
82 |
|
eldifi |
|
83 |
82
|
ad2antrl |
|
84 |
15 83
|
sselid |
|
85 |
4
|
adantr |
|
86 |
85 83
|
ffvelrnd |
|
87 |
86
|
s1cld |
|
88 |
|
ccatcl |
|
89 |
84 87 88
|
syl2anc |
|
90 |
15 82
|
sselid |
|
91 |
90
|
ad2antrl |
|
92 |
|
ccatws1len |
|
93 |
91 92
|
syl |
|
94 |
83 3
|
eleqtrdi |
|
95 |
94
|
elin2d |
|
96 |
|
elpreima |
|
97 |
56 57 96
|
mp2b |
|
98 |
95 97
|
sylib |
|
99 |
|
peano2uz |
|
100 |
98 99
|
simpl2im |
|
101 |
93 100
|
eqeltrd |
|
102 |
|
elpreima |
|
103 |
56 57 102
|
mp2b |
|
104 |
80 101 103
|
sylanbrc |
|
105 |
89 104
|
elind |
|
106 |
105 3
|
eleqtrrdi |
|
107 |
|
ccatws1n0 |
|
108 |
91 107
|
syl |
|
109 |
|
eldifsn |
|
110 |
106 108 109
|
sylanbrc |
|
111 |
81 110
|
eqeltrd |
|
112 |
28 31 69 111
|
seqf |
|
113 |
|
fco2 |
|
114 |
27 112 113
|
syl2anc |
|
115 |
|
fzouzdisj |
|
116 |
115
|
a1i |
|
117 |
|
fun |
|
118 |
6 114 116 117
|
syl21anc |
|
119 |
1 2 3 4
|
sseqval |
|
120 |
|
fzouzsplit |
|
121 |
36 120
|
sylbi |
|
122 |
2 29 121
|
3syl |
|
123 |
40 122
|
syl5eq |
|
124 |
|
unidm |
|
125 |
124
|
a1i |
|
126 |
125
|
eqcomd |
|
127 |
119 123 126
|
feq123d |
|
128 |
118 127
|
mpbird |
|