| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseqval.1 |
|
| 2 |
|
sseqval.2 |
|
| 3 |
|
sseqval.3 |
|
| 4 |
|
sseqval.4 |
|
| 5 |
|
wrdf |
|
| 6 |
2 5
|
syl |
|
| 7 |
|
vex |
|
| 8 |
7
|
a1i |
|
| 9 |
|
fvex |
|
| 10 |
|
df-lsw |
|
| 11 |
9 10
|
dmmpti |
|
| 12 |
8 11
|
eleqtrrdi |
|
| 13 |
|
eldifsn |
|
| 14 |
|
inss1 |
|
| 15 |
3 14
|
eqsstri |
|
| 16 |
15
|
sseli |
|
| 17 |
|
lswcl |
|
| 18 |
16 17
|
sylan |
|
| 19 |
13 18
|
sylbi |
|
| 20 |
19
|
adantl |
|
| 21 |
12 20
|
jca |
|
| 22 |
21
|
ralrimiva |
|
| 23 |
9 10
|
fnmpti |
|
| 24 |
|
fnfun |
|
| 25 |
|
ffvresb |
|
| 26 |
23 24 25
|
mp2b |
|
| 27 |
22 26
|
sylibr |
|
| 28 |
|
eqid |
|
| 29 |
|
lencl |
|
| 30 |
29
|
nn0zd |
|
| 31 |
2 30
|
syl |
|
| 32 |
|
ovex |
|
| 33 |
|
simpr |
|
| 34 |
2 29
|
syl |
|
| 35 |
34
|
adantr |
|
| 36 |
|
elnn0uz |
|
| 37 |
35 36
|
sylib |
|
| 38 |
|
uztrn |
|
| 39 |
33 37 38
|
syl2anc |
|
| 40 |
|
nn0uz |
|
| 41 |
39 40
|
eleqtrrdi |
|
| 42 |
|
fvconst2g |
|
| 43 |
32 41 42
|
sylancr |
|
| 44 |
1 2 3 4
|
sseqmw |
|
| 45 |
4 44
|
ffvelcdmd |
|
| 46 |
45
|
s1cld |
|
| 47 |
|
ccatcl |
|
| 48 |
2 46 47
|
syl2anc |
|
| 49 |
32
|
a1i |
|
| 50 |
|
ccatws1len |
|
| 51 |
2 50
|
syl |
|
| 52 |
|
uzid |
|
| 53 |
|
peano2uz |
|
| 54 |
31 52 53
|
3syl |
|
| 55 |
51 54
|
eqeltrd |
|
| 56 |
|
hashf |
|
| 57 |
|
ffn |
|
| 58 |
|
elpreima |
|
| 59 |
56 57 58
|
mp2b |
|
| 60 |
49 55 59
|
sylanbrc |
|
| 61 |
48 60
|
elind |
|
| 62 |
61 3
|
eleqtrrdi |
|
| 63 |
62
|
adantr |
|
| 64 |
|
ccatws1n0 |
|
| 65 |
2 64
|
syl |
|
| 66 |
65
|
adantr |
|
| 67 |
|
eldifsn |
|
| 68 |
63 66 67
|
sylanbrc |
|
| 69 |
43 68
|
eqeltrd |
|
| 70 |
|
eqidd |
|
| 71 |
|
simprl |
|
| 72 |
71
|
fveq2d |
|
| 73 |
72
|
s1eqd |
|
| 74 |
71 73
|
oveq12d |
|
| 75 |
|
vex |
|
| 76 |
75
|
a1i |
|
| 77 |
|
vex |
|
| 78 |
77
|
a1i |
|
| 79 |
|
ovex |
|
| 80 |
79
|
a1i |
|
| 81 |
70 74 76 78 80
|
ovmpod |
|
| 82 |
|
eldifi |
|
| 83 |
82
|
ad2antrl |
|
| 84 |
15 83
|
sselid |
|
| 85 |
4
|
adantr |
|
| 86 |
85 83
|
ffvelcdmd |
|
| 87 |
86
|
s1cld |
|
| 88 |
|
ccatcl |
|
| 89 |
84 87 88
|
syl2anc |
|
| 90 |
15 82
|
sselid |
|
| 91 |
90
|
ad2antrl |
|
| 92 |
|
ccatws1len |
|
| 93 |
91 92
|
syl |
|
| 94 |
83 3
|
eleqtrdi |
|
| 95 |
94
|
elin2d |
|
| 96 |
|
elpreima |
|
| 97 |
56 57 96
|
mp2b |
|
| 98 |
95 97
|
sylib |
|
| 99 |
|
peano2uz |
|
| 100 |
98 99
|
simpl2im |
|
| 101 |
93 100
|
eqeltrd |
|
| 102 |
|
elpreima |
|
| 103 |
56 57 102
|
mp2b |
|
| 104 |
80 101 103
|
sylanbrc |
|
| 105 |
89 104
|
elind |
|
| 106 |
105 3
|
eleqtrrdi |
|
| 107 |
|
ccatws1n0 |
|
| 108 |
91 107
|
syl |
|
| 109 |
|
eldifsn |
|
| 110 |
106 108 109
|
sylanbrc |
|
| 111 |
81 110
|
eqeltrd |
|
| 112 |
28 31 69 111
|
seqf |
|
| 113 |
|
fco2 |
|
| 114 |
27 112 113
|
syl2anc |
|
| 115 |
|
fzouzdisj |
|
| 116 |
115
|
a1i |
|
| 117 |
|
fun |
|
| 118 |
6 114 116 117
|
syl21anc |
|
| 119 |
1 2 3 4
|
sseqval |
|
| 120 |
|
fzouzsplit |
|
| 121 |
36 120
|
sylbi |
|
| 122 |
2 29 121
|
3syl |
|
| 123 |
40 122
|
eqtrid |
|
| 124 |
|
unidm |
|
| 125 |
124
|
a1i |
|
| 126 |
125
|
eqcomd |
|
| 127 |
119 123 126
|
feq123d |
|
| 128 |
118 127
|
mpbird |
|