Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
|- ( ph -> S e. _V ) |
2 |
|
sseqval.2 |
|- ( ph -> M e. Word S ) |
3 |
|
sseqval.3 |
|- W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
4 |
|
sseqval.4 |
|- ( ph -> F : W --> S ) |
5 |
|
wrdf |
|- ( M e. Word S -> M : ( 0 ..^ ( # ` M ) ) --> S ) |
6 |
2 5
|
syl |
|- ( ph -> M : ( 0 ..^ ( # ` M ) ) --> S ) |
7 |
|
vex |
|- w e. _V |
8 |
7
|
a1i |
|- ( ( ph /\ w e. ( W \ { (/) } ) ) -> w e. _V ) |
9 |
|
fvex |
|- ( x ` ( ( # ` x ) - 1 ) ) e. _V |
10 |
|
df-lsw |
|- lastS = ( x e. _V |-> ( x ` ( ( # ` x ) - 1 ) ) ) |
11 |
9 10
|
dmmpti |
|- dom lastS = _V |
12 |
8 11
|
eleqtrrdi |
|- ( ( ph /\ w e. ( W \ { (/) } ) ) -> w e. dom lastS ) |
13 |
|
eldifsn |
|- ( w e. ( W \ { (/) } ) <-> ( w e. W /\ w =/= (/) ) ) |
14 |
|
inss1 |
|- ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) C_ Word S |
15 |
3 14
|
eqsstri |
|- W C_ Word S |
16 |
15
|
sseli |
|- ( w e. W -> w e. Word S ) |
17 |
|
lswcl |
|- ( ( w e. Word S /\ w =/= (/) ) -> ( lastS ` w ) e. S ) |
18 |
16 17
|
sylan |
|- ( ( w e. W /\ w =/= (/) ) -> ( lastS ` w ) e. S ) |
19 |
13 18
|
sylbi |
|- ( w e. ( W \ { (/) } ) -> ( lastS ` w ) e. S ) |
20 |
19
|
adantl |
|- ( ( ph /\ w e. ( W \ { (/) } ) ) -> ( lastS ` w ) e. S ) |
21 |
12 20
|
jca |
|- ( ( ph /\ w e. ( W \ { (/) } ) ) -> ( w e. dom lastS /\ ( lastS ` w ) e. S ) ) |
22 |
21
|
ralrimiva |
|- ( ph -> A. w e. ( W \ { (/) } ) ( w e. dom lastS /\ ( lastS ` w ) e. S ) ) |
23 |
9 10
|
fnmpti |
|- lastS Fn _V |
24 |
|
fnfun |
|- ( lastS Fn _V -> Fun lastS ) |
25 |
|
ffvresb |
|- ( Fun lastS -> ( ( lastS |` ( W \ { (/) } ) ) : ( W \ { (/) } ) --> S <-> A. w e. ( W \ { (/) } ) ( w e. dom lastS /\ ( lastS ` w ) e. S ) ) ) |
26 |
23 24 25
|
mp2b |
|- ( ( lastS |` ( W \ { (/) } ) ) : ( W \ { (/) } ) --> S <-> A. w e. ( W \ { (/) } ) ( w e. dom lastS /\ ( lastS ` w ) e. S ) ) |
27 |
22 26
|
sylibr |
|- ( ph -> ( lastS |` ( W \ { (/) } ) ) : ( W \ { (/) } ) --> S ) |
28 |
|
eqid |
|- ( ZZ>= ` ( # ` M ) ) = ( ZZ>= ` ( # ` M ) ) |
29 |
|
lencl |
|- ( M e. Word S -> ( # ` M ) e. NN0 ) |
30 |
29
|
nn0zd |
|- ( M e. Word S -> ( # ` M ) e. ZZ ) |
31 |
2 30
|
syl |
|- ( ph -> ( # ` M ) e. ZZ ) |
32 |
|
ovex |
|- ( M ++ <" ( F ` M ) "> ) e. _V |
33 |
|
simpr |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> a e. ( ZZ>= ` ( # ` M ) ) ) |
34 |
2 29
|
syl |
|- ( ph -> ( # ` M ) e. NN0 ) |
35 |
34
|
adantr |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( # ` M ) e. NN0 ) |
36 |
|
elnn0uz |
|- ( ( # ` M ) e. NN0 <-> ( # ` M ) e. ( ZZ>= ` 0 ) ) |
37 |
35 36
|
sylib |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( # ` M ) e. ( ZZ>= ` 0 ) ) |
38 |
|
uztrn |
|- ( ( a e. ( ZZ>= ` ( # ` M ) ) /\ ( # ` M ) e. ( ZZ>= ` 0 ) ) -> a e. ( ZZ>= ` 0 ) ) |
39 |
33 37 38
|
syl2anc |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> a e. ( ZZ>= ` 0 ) ) |
40 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
41 |
39 40
|
eleqtrrdi |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> a e. NN0 ) |
42 |
|
fvconst2g |
|- ( ( ( M ++ <" ( F ` M ) "> ) e. _V /\ a e. NN0 ) -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` a ) = ( M ++ <" ( F ` M ) "> ) ) |
43 |
32 41 42
|
sylancr |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` a ) = ( M ++ <" ( F ` M ) "> ) ) |
44 |
1 2 3 4
|
sseqmw |
|- ( ph -> M e. W ) |
45 |
4 44
|
ffvelrnd |
|- ( ph -> ( F ` M ) e. S ) |
46 |
45
|
s1cld |
|- ( ph -> <" ( F ` M ) "> e. Word S ) |
47 |
|
ccatcl |
|- ( ( M e. Word S /\ <" ( F ` M ) "> e. Word S ) -> ( M ++ <" ( F ` M ) "> ) e. Word S ) |
48 |
2 46 47
|
syl2anc |
|- ( ph -> ( M ++ <" ( F ` M ) "> ) e. Word S ) |
49 |
32
|
a1i |
|- ( ph -> ( M ++ <" ( F ` M ) "> ) e. _V ) |
50 |
|
ccatws1len |
|- ( M e. Word S -> ( # ` ( M ++ <" ( F ` M ) "> ) ) = ( ( # ` M ) + 1 ) ) |
51 |
2 50
|
syl |
|- ( ph -> ( # ` ( M ++ <" ( F ` M ) "> ) ) = ( ( # ` M ) + 1 ) ) |
52 |
|
uzid |
|- ( ( # ` M ) e. ZZ -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) |
53 |
|
peano2uz |
|- ( ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) -> ( ( # ` M ) + 1 ) e. ( ZZ>= ` ( # ` M ) ) ) |
54 |
31 52 53
|
3syl |
|- ( ph -> ( ( # ` M ) + 1 ) e. ( ZZ>= ` ( # ` M ) ) ) |
55 |
51 54
|
eqeltrd |
|- ( ph -> ( # ` ( M ++ <" ( F ` M ) "> ) ) e. ( ZZ>= ` ( # ` M ) ) ) |
56 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
57 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
58 |
|
elpreima |
|- ( # Fn _V -> ( ( M ++ <" ( F ` M ) "> ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( M ++ <" ( F ` M ) "> ) e. _V /\ ( # ` ( M ++ <" ( F ` M ) "> ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) |
59 |
56 57 58
|
mp2b |
|- ( ( M ++ <" ( F ` M ) "> ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( M ++ <" ( F ` M ) "> ) e. _V /\ ( # ` ( M ++ <" ( F ` M ) "> ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
60 |
49 55 59
|
sylanbrc |
|- ( ph -> ( M ++ <" ( F ` M ) "> ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
61 |
48 60
|
elind |
|- ( ph -> ( M ++ <" ( F ` M ) "> ) e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) |
62 |
61 3
|
eleqtrrdi |
|- ( ph -> ( M ++ <" ( F ` M ) "> ) e. W ) |
63 |
62
|
adantr |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( M ++ <" ( F ` M ) "> ) e. W ) |
64 |
|
ccatws1n0 |
|- ( M e. Word S -> ( M ++ <" ( F ` M ) "> ) =/= (/) ) |
65 |
2 64
|
syl |
|- ( ph -> ( M ++ <" ( F ` M ) "> ) =/= (/) ) |
66 |
65
|
adantr |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( M ++ <" ( F ` M ) "> ) =/= (/) ) |
67 |
|
eldifsn |
|- ( ( M ++ <" ( F ` M ) "> ) e. ( W \ { (/) } ) <-> ( ( M ++ <" ( F ` M ) "> ) e. W /\ ( M ++ <" ( F ` M ) "> ) =/= (/) ) ) |
68 |
63 66 67
|
sylanbrc |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( M ++ <" ( F ` M ) "> ) e. ( W \ { (/) } ) ) |
69 |
43 68
|
eqeltrd |
|- ( ( ph /\ a e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` a ) e. ( W \ { (/) } ) ) |
70 |
|
eqidd |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) = ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) ) |
71 |
|
simprl |
|- ( ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) /\ ( x = a /\ y = b ) ) -> x = a ) |
72 |
71
|
fveq2d |
|- ( ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) /\ ( x = a /\ y = b ) ) -> ( F ` x ) = ( F ` a ) ) |
73 |
72
|
s1eqd |
|- ( ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) /\ ( x = a /\ y = b ) ) -> <" ( F ` x ) "> = <" ( F ` a ) "> ) |
74 |
71 73
|
oveq12d |
|- ( ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) /\ ( x = a /\ y = b ) ) -> ( x ++ <" ( F ` x ) "> ) = ( a ++ <" ( F ` a ) "> ) ) |
75 |
|
vex |
|- a e. _V |
76 |
75
|
a1i |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> a e. _V ) |
77 |
|
vex |
|- b e. _V |
78 |
77
|
a1i |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> b e. _V ) |
79 |
|
ovex |
|- ( a ++ <" ( F ` a ) "> ) e. _V |
80 |
79
|
a1i |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) e. _V ) |
81 |
70 74 76 78 80
|
ovmpod |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) b ) = ( a ++ <" ( F ` a ) "> ) ) |
82 |
|
eldifi |
|- ( a e. ( W \ { (/) } ) -> a e. W ) |
83 |
82
|
ad2antrl |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> a e. W ) |
84 |
15 83
|
sselid |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> a e. Word S ) |
85 |
4
|
adantr |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> F : W --> S ) |
86 |
85 83
|
ffvelrnd |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( F ` a ) e. S ) |
87 |
86
|
s1cld |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> <" ( F ` a ) "> e. Word S ) |
88 |
|
ccatcl |
|- ( ( a e. Word S /\ <" ( F ` a ) "> e. Word S ) -> ( a ++ <" ( F ` a ) "> ) e. Word S ) |
89 |
84 87 88
|
syl2anc |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) e. Word S ) |
90 |
15 82
|
sselid |
|- ( a e. ( W \ { (/) } ) -> a e. Word S ) |
91 |
90
|
ad2antrl |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> a e. Word S ) |
92 |
|
ccatws1len |
|- ( a e. Word S -> ( # ` ( a ++ <" ( F ` a ) "> ) ) = ( ( # ` a ) + 1 ) ) |
93 |
91 92
|
syl |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( # ` ( a ++ <" ( F ` a ) "> ) ) = ( ( # ` a ) + 1 ) ) |
94 |
83 3
|
eleqtrdi |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> a e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) |
95 |
94
|
elin2d |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> a e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
96 |
|
elpreima |
|- ( # Fn _V -> ( a e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( a e. _V /\ ( # ` a ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) |
97 |
56 57 96
|
mp2b |
|- ( a e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( a e. _V /\ ( # ` a ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
98 |
95 97
|
sylib |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a e. _V /\ ( # ` a ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
99 |
|
peano2uz |
|- ( ( # ` a ) e. ( ZZ>= ` ( # ` M ) ) -> ( ( # ` a ) + 1 ) e. ( ZZ>= ` ( # ` M ) ) ) |
100 |
98 99
|
simpl2im |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( ( # ` a ) + 1 ) e. ( ZZ>= ` ( # ` M ) ) ) |
101 |
93 100
|
eqeltrd |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( # ` ( a ++ <" ( F ` a ) "> ) ) e. ( ZZ>= ` ( # ` M ) ) ) |
102 |
|
elpreima |
|- ( # Fn _V -> ( ( a ++ <" ( F ` a ) "> ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( a ++ <" ( F ` a ) "> ) e. _V /\ ( # ` ( a ++ <" ( F ` a ) "> ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) |
103 |
56 57 102
|
mp2b |
|- ( ( a ++ <" ( F ` a ) "> ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( a ++ <" ( F ` a ) "> ) e. _V /\ ( # ` ( a ++ <" ( F ` a ) "> ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
104 |
80 101 103
|
sylanbrc |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
105 |
89 104
|
elind |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) |
106 |
105 3
|
eleqtrrdi |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) e. W ) |
107 |
|
ccatws1n0 |
|- ( a e. Word S -> ( a ++ <" ( F ` a ) "> ) =/= (/) ) |
108 |
91 107
|
syl |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) =/= (/) ) |
109 |
|
eldifsn |
|- ( ( a ++ <" ( F ` a ) "> ) e. ( W \ { (/) } ) <-> ( ( a ++ <" ( F ` a ) "> ) e. W /\ ( a ++ <" ( F ` a ) "> ) =/= (/) ) ) |
110 |
106 108 109
|
sylanbrc |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ++ <" ( F ` a ) "> ) e. ( W \ { (/) } ) ) |
111 |
81 110
|
eqeltrd |
|- ( ( ph /\ ( a e. ( W \ { (/) } ) /\ b e. ( W \ { (/) } ) ) ) -> ( a ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) b ) e. ( W \ { (/) } ) ) |
112 |
28 31 69 111
|
seqf |
|- ( ph -> seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) : ( ZZ>= ` ( # ` M ) ) --> ( W \ { (/) } ) ) |
113 |
|
fco2 |
|- ( ( ( lastS |` ( W \ { (/) } ) ) : ( W \ { (/) } ) --> S /\ seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) : ( ZZ>= ` ( # ` M ) ) --> ( W \ { (/) } ) ) -> ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) : ( ZZ>= ` ( # ` M ) ) --> S ) |
114 |
27 112 113
|
syl2anc |
|- ( ph -> ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) : ( ZZ>= ` ( # ` M ) ) --> S ) |
115 |
|
fzouzdisj |
|- ( ( 0 ..^ ( # ` M ) ) i^i ( ZZ>= ` ( # ` M ) ) ) = (/) |
116 |
115
|
a1i |
|- ( ph -> ( ( 0 ..^ ( # ` M ) ) i^i ( ZZ>= ` ( # ` M ) ) ) = (/) ) |
117 |
|
fun |
|- ( ( ( M : ( 0 ..^ ( # ` M ) ) --> S /\ ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) : ( ZZ>= ` ( # ` M ) ) --> S ) /\ ( ( 0 ..^ ( # ` M ) ) i^i ( ZZ>= ` ( # ` M ) ) ) = (/) ) -> ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) : ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) --> ( S u. S ) ) |
118 |
6 114 116 117
|
syl21anc |
|- ( ph -> ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) : ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) --> ( S u. S ) ) |
119 |
1 2 3 4
|
sseqval |
|- ( ph -> ( M seqstr F ) = ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ) |
120 |
|
fzouzsplit |
|- ( ( # ` M ) e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) ) |
121 |
36 120
|
sylbi |
|- ( ( # ` M ) e. NN0 -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) ) |
122 |
2 29 121
|
3syl |
|- ( ph -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) ) |
123 |
40 122
|
eqtrid |
|- ( ph -> NN0 = ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) ) |
124 |
|
unidm |
|- ( S u. S ) = S |
125 |
124
|
a1i |
|- ( ph -> ( S u. S ) = S ) |
126 |
125
|
eqcomd |
|- ( ph -> S = ( S u. S ) ) |
127 |
119 123 126
|
feq123d |
|- ( ph -> ( ( M seqstr F ) : NN0 --> S <-> ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) : ( ( 0 ..^ ( # ` M ) ) u. ( ZZ>= ` ( # ` M ) ) ) --> ( S u. S ) ) ) |
128 |
118 127
|
mpbird |
|- ( ph -> ( M seqstr F ) : NN0 --> S ) |