Metamath Proof Explorer


Theorem sseqmw

Description: Lemma for sseqf amd sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses sseqval.1
|- ( ph -> S e. _V )
sseqval.2
|- ( ph -> M e. Word S )
sseqval.3
|- W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) )
sseqval.4
|- ( ph -> F : W --> S )
Assertion sseqmw
|- ( ph -> M e. W )

Proof

Step Hyp Ref Expression
1 sseqval.1
 |-  ( ph -> S e. _V )
2 sseqval.2
 |-  ( ph -> M e. Word S )
3 sseqval.3
 |-  W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) )
4 sseqval.4
 |-  ( ph -> F : W --> S )
5 elex
 |-  ( M e. Word S -> M e. _V )
6 2 5 syl
 |-  ( ph -> M e. _V )
7 lencl
 |-  ( M e. Word S -> ( # ` M ) e. NN0 )
8 7 nn0zd
 |-  ( M e. Word S -> ( # ` M ) e. ZZ )
9 uzid
 |-  ( ( # ` M ) e. ZZ -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) )
10 2 8 9 3syl
 |-  ( ph -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) )
11 hashf
 |-  # : _V --> ( NN0 u. { +oo } )
12 ffn
 |-  ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V )
13 elpreima
 |-  ( # Fn _V -> ( M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( M e. _V /\ ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) ) )
14 11 12 13 mp2b
 |-  ( M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( M e. _V /\ ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) )
15 6 10 14 sylanbrc
 |-  ( ph -> M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) )
16 2 15 elind
 |-  ( ph -> M e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) )
17 16 3 eleqtrrdi
 |-  ( ph -> M e. W )