Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
|- ( ph -> S e. _V ) |
2 |
|
sseqval.2 |
|- ( ph -> M e. Word S ) |
3 |
|
sseqval.3 |
|- W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
4 |
|
sseqval.4 |
|- ( ph -> F : W --> S ) |
5 |
|
elex |
|- ( M e. Word S -> M e. _V ) |
6 |
2 5
|
syl |
|- ( ph -> M e. _V ) |
7 |
|
lencl |
|- ( M e. Word S -> ( # ` M ) e. NN0 ) |
8 |
7
|
nn0zd |
|- ( M e. Word S -> ( # ` M ) e. ZZ ) |
9 |
|
uzid |
|- ( ( # ` M ) e. ZZ -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) |
10 |
2 8 9
|
3syl |
|- ( ph -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) |
11 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
12 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
13 |
|
elpreima |
|- ( # Fn _V -> ( M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( M e. _V /\ ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) |
14 |
11 12 13
|
mp2b |
|- ( M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( M e. _V /\ ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
15 |
6 10 14
|
sylanbrc |
|- ( ph -> M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
16 |
2 15
|
elind |
|- ( ph -> M e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) |
17 |
16 3
|
eleqtrrdi |
|- ( ph -> M e. W ) |