| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 |  |-  ( ph -> S e. _V ) | 
						
							| 2 |  | sseqval.2 |  |-  ( ph -> M e. Word S ) | 
						
							| 3 |  | sseqval.3 |  |-  W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) | 
						
							| 4 |  | sseqval.4 |  |-  ( ph -> F : W --> S ) | 
						
							| 5 |  | elex |  |-  ( M e. Word S -> M e. _V ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> M e. _V ) | 
						
							| 7 |  | lencl |  |-  ( M e. Word S -> ( # ` M ) e. NN0 ) | 
						
							| 8 | 7 | nn0zd |  |-  ( M e. Word S -> ( # ` M ) e. ZZ ) | 
						
							| 9 |  | uzid |  |-  ( ( # ` M ) e. ZZ -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 10 | 2 8 9 | 3syl |  |-  ( ph -> ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 11 |  | hashf |  |-  # : _V --> ( NN0 u. { +oo } ) | 
						
							| 12 |  | ffn |  |-  ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) | 
						
							| 13 |  | elpreima |  |-  ( # Fn _V -> ( M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( M e. _V /\ ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) | 
						
							| 14 | 11 12 13 | mp2b |  |-  ( M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( M e. _V /\ ( # ` M ) e. ( ZZ>= ` ( # ` M ) ) ) ) | 
						
							| 15 | 6 10 14 | sylanbrc |  |-  ( ph -> M e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) | 
						
							| 16 | 2 15 | elind |  |-  ( ph -> M e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) | 
						
							| 17 | 16 3 | eleqtrrdi |  |-  ( ph -> M e. W ) |